Mobility with Traversal Using Relays around NAT (TURN)
RFC 8016

Document Type RFC - Proposed Standard (November 2016; No errata)
Last updated 2016-11-10
Stream IETF
Formats plain text pdf html bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Simon Perreault
Shepherd write-up Show (last changed 2016-07-11)
IESG IESG state RFC 8016 (Proposed Standard)
Consensus Boilerplate Yes
Telechat date
Responsible AD Spencer Dawkins
Send notices to "Simon Perreault" <sperreault@jive.com>
IANA IANA review state Version Changed - Review Needed
IANA action state RFC-Ed-Ack
Internet Engineering Task Force (IETF)                          T. Reddy
Request for Comments: 8016                                         Cisco
Category: Standards Track                                        D. Wing
ISSN: 2070-1721
                                                                P. Patil
                                                            P. Martinsen
                                                                   Cisco
                                                           November 2016

         Mobility with Traversal Using Relays around NAT (TURN)

Abstract

   It is desirable to minimize traffic disruption caused by changing IP
   address during a mobility event.  One mechanism to minimize
   disruption is to expose a shorter network path to the mobility event
   so that only the local network elements are aware of the changed IP
   address and the remote peer is unaware of the changed IP address.

   This document provides such an IP address mobility solution using
   Traversal Using Relays around NAT (TURN).  This is achieved by
   allowing a client to retain an allocation on the TURN server when the
   IP address of the client changes.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc8016.

Reddy, et al.                Standards Track                    [Page 1]
RFC 8016                   Mobility with TURN              November 2016

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Notational Conventions  . . . . . . . . . . . . . . . . . . .   4
   3.  Mobility Using TURN . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  Creating an Allocation  . . . . . . . . . . . . . . . . .   5
       3.1.1.  Sending an Allocate Request . . . . . . . . . . . . .   5
       3.1.2.  Receiving an Allocate Request . . . . . . . . . . . .   6
       3.1.3.  Receiving an Allocate Success Response  . . . . . . .   6
       3.1.4.  Receiving an Allocate Error Response  . . . . . . . .   7
     3.2.  Refreshing an Allocation  . . . . . . . . . . . . . . . .   7
       3.2.1.  Sending a Refresh Request . . . . . . . . . . . . . .   7
       3.2.2.  Receiving a Refresh Request . . . . . . . . . . . . .   7
       3.2.3.  Receiving a Refresh Response  . . . . . . . . . . . .   9
     3.3.  New STUN Attribute MOBILITY-TICKET  . . . . . . . . . . .   9
     3.4.  New STUN Error Response Code  . . . . . . . . . . . . . .   9
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     6.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
     6.2.  Informative References  . . . . . . . . . . . . . . . . .  11
   Appendix A.  Example of Ticket Construction . . . . . . . . . . .  12
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  13

Reddy, et al.                Standards Track                    [Page 2]
RFC 8016                   Mobility with TURN              November 2016

1.  Introduction

   When moving between networks, the endpoint's IP address can change
   or, due to NAT, the endpoint's public IP address can change.  Such a
   change of IP address breaks upper-layer protocols such as TCP and
   RTP.  Various techniques exist to prevent this breakage, all tied to
   making the endpoint's IP address static (e.g., Mobile IP, Proxy
Show full document text