Host Multihoming with the Host Identity Protocol
RFC 8047
Internet Engineering Task Force (IETF) T. Henderson, Ed.
Request for Comments: 8047 University of Washington
Category: Standards Track C. Vogt
ISSN: 2070-1721 Independent
J. Arkko
Ericsson
February 2017
Host Multihoming with the Host Identity Protocol
Abstract
This document defines host multihoming extensions to the Host
Identity Protocol (HIP), by leveraging protocol components defined
for host mobility.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc8047.
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Henderson, et al. Standards Track [Page 1]
RFC 8047 HIP Multihoming February 2017
Table of Contents
1. Introduction and Scope . . . . . . . . . . . . . . . . . . . 3
2. Terminology and Conventions . . . . . . . . . . . . . . . . . 4
3. Protocol Model . . . . . . . . . . . . . . . . . . . . . . . 4
4. Protocol Overview . . . . . . . . . . . . . . . . . . . . . . 4
4.1. Background . . . . . . . . . . . . . . . . . . . . . . . 5
4.2. Usage Scenarios . . . . . . . . . . . . . . . . . . . . . 6
4.2.1. Multiple Addresses . . . . . . . . . . . . . . . . . 6
4.2.2. Multiple Security Associations . . . . . . . . . . . 6
4.2.3. Host Multihoming for Fault Tolerance . . . . . . . . 7
4.2.4. Host Multihoming for Load Balancing . . . . . . . . . 9
4.2.5. Site Multihoming . . . . . . . . . . . . . . . . . . 10
4.2.6. Dual-Host Multihoming . . . . . . . . . . . . . . . . 10
4.2.7. Combined Mobility and Multihoming . . . . . . . . . . 11
4.2.8. Initiating the Protocol in R1, I2, or R2 . . . . . . 11
4.2.9. Using LOCATOR_SETs across Addressing Realms . . . . . 13
4.3. Interaction with Security Associations . . . . . . . . . 13
5. Processing Rules . . . . . . . . . . . . . . . . . . . . . . 14
5.1. Sending LOCATOR_SETs . . . . . . . . . . . . . . . . . . 14
5.2. Handling Received LOCATOR_SETs . . . . . . . . . . . . . 16
5.3. Verifying Address Reachability . . . . . . . . . . . . . 18
5.4. Changing the Preferred Locator . . . . . . . . . . . . . 18
6. Security Considerations . . . . . . . . . . . . . . . . . . . 19
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.1. Normative References . . . . . . . . . . . . . . . . . . 21
7.2. Informative References . . . . . . . . . . . . . . . . . 21
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 22
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 22
Henderson, et al. Standards Track [Page 2]
RFC 8047 HIP Multihoming February 2017
1. Introduction and Scope
The Host Identity Protocol (HIP) [RFC7401] supports an architecture
that decouples the transport layer (TCP, UDP, etc.) from the
internetworking layer (IPv4 and IPv6) by using public/private key
pairs, instead of IP addresses, as host identities. When a host uses
HIP, the overlying protocol sublayers (e.g., transport-layer sockets
and Encapsulating Security Payload (ESP) Security Associations (SAs))
are instead bound to representations of these host identities, and
the IP addresses are only used for packet forwarding. However, each
host must also know at least one IP address at which its peers are
Show full document text