CBOR Object Signing and Encryption (COSE)
RFC 8152
Document | Type |
RFC - Proposed Standard
(July 2017; Errata)
Was draft-ietf-cose-msg (cose WG)
|
|
---|---|---|---|
Author | Jim Schaad | ||
Last updated | 2020-01-21 | ||
Replaces | draft-schaad-cose-msg | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized with errata bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | Göran Selander | ||
Shepherd write-up | Show (last changed 2016-08-14) | ||
IESG | IESG state | RFC 8152 (Proposed Standard) | |
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Kathleen Moriarty | ||
Send notices to | "Goeran Selander" <goran.selander@ericsson.com> | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | RFC-Ed-Ack |
Internet Engineering Task Force (IETF) J. Schaad Request for Comments: 8152 August Cellars Category: Standards Track July 2017 ISSN: 2070-1721 CBOR Object Signing and Encryption (COSE) Abstract Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need for the ability to have basic security services defined for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc8152. Copyright Notice Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Schaad Standards Track [Page 1] RFC 8152 CBOR Object Signing and Encryption (COSE) July 2017 Table of Contents 1. Introduction ....................................................4 1.1. Design Changes from JOSE ...................................5 1.2. Requirements Terminology ...................................6 1.3. CBOR Grammar ...............................................6 1.4. CBOR-Related Terminology ...................................7 1.5. Document Terminology .......................................8 2. Basic COSE Structure ............................................8 3. Header Parameters ..............................................10 3.1. Common COSE Headers Parameters ............................12 4. Signing Objects ................................................16 4.1. Signing with One or More Signers ..........................16 4.2. Signing with One Signer ...................................18 4.3. Externally Supplied Data ..................................19 4.4. Signing and Verification Process ..........................20 4.5. Computing Counter Signatures ..............................22 5. Encryption Objects .............................................22 5.1. Enveloped COSE Structure ..................................23 5.1.1. Content Key Distribution Methods ...................24 5.2. Single Recipient Encrypted ................................25 5.3. How to Encrypt and Decrypt for AEAD Algorithms ............26 5.4. How to Encrypt and Decrypt for AE Algorithms ..............28 6. MAC Objects ....................................................29 6.1. MACed Message with Recipients .............................30 6.2. MACed Messages with Implicit Key ..........................31 6.3. How to Compute and Verify a MAC ...........................32 7. Key Objects ....................................................33 7.1. COSE Key Common Parameters ................................34 8. Signature Algorithms ...........................................37 8.1. ECDSA .....................................................38 8.1.1. Security Considerations ............................40 8.2. Edwards-Curve Digital Signature Algorithms (EdDSAs) .......40 8.2.1. Security Considerations ............................41 9. Message Authentication Code (MAC) Algorithms ...................42 9.1. Hash-Based Message Authentication Codes (HMACs) ...........42 9.1.1. Security Considerations ............................44 9.2. AES Message Authentication Code (AES-CBC-MAC) .............44 9.2.1. Security Considerations ............................45Show full document text