Resiliency Use Cases in Source Packet Routing in Networking (SPRING) Networks
RFC 8355

Document Type RFC - Informational (March 2018; Errata)
Last updated 2018-06-06
Replaces draft-francois-spring-resiliency-use-case
Stream IETF
Formats plain text pdf html bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Stephane Litkowski
Shepherd write-up Show (last changed 2017-02-14)
IESG IESG state RFC 8355 (Informational)
Consensus Boilerplate Yes
Telechat date
Responsible AD Alvaro Retana
Send notices to "Stephane Litkowski" <stephane.litkowski@orange.com>, aretana.ietf@gmail.com
IANA IANA review state Version Changed - Review Needed
IANA action state No IC
Internet Engineering Task Force (IETF)                  C. Filsfils, Ed.
Request for Comments: 8355                               S. Previdi, Ed.
Category: Informational                              Cisco Systems, Inc.
ISSN: 2070-1721                                              B. Decraene
                                                                  Orange
                                                               R. Shakir
                                                                  Google
                                                              March 2018

                          Resiliency Use Cases
        in Source Packet Routing in Networking (SPRING) Networks

Abstract

   This document identifies and describes the requirements for a set of
   use cases related to Segment Routing network resiliency on Source
   Packet Routing in Networking (SPRING) networks.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are candidates for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8355.

Filsfils, et al.              Informational                     [Page 1]
RFC 8355               SPRING Resiliency Use Cases            March 2018

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   4
   2.  Path Protection . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Management-Free Local Protection  . . . . . . . . . . . . . .   6
     3.1.  Management-Free Bypass Protection . . . . . . . . . . . .   7
     3.2.  Management-Free Shortest-Path-Based Protection  . . . . .   8
   4.  Managed Local Protection  . . . . . . . . . . . . . . . . . .   8
     4.1.  Managed Bypass Protection . . . . . . . . . . . . . . . .   9
     4.2.  Managed Shortest Path Protection  . . . . . . . . . . . .   9
   5.  Loop Avoidance  . . . . . . . . . . . . . . . . . . . . . . .  10
   6.  Coexistence of Multiple Resilience Techniques in the Same
       Infrastructure  . . . . . . . . . . . . . . . . . . . . . . .  10
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  11
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
   9.  Manageability Considerations  . . . . . . . . . . . . . . . .  11
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  12
     10.2.  Informative References . . . . . . . . . . . . . . . . .  12
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  12
   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  12
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  13

Filsfils, et al.              Informational                     [Page 2]
RFC 8355               SPRING Resiliency Use Cases            March 2018

1.  Introduction

   This document reviews various use cases for the protection of
   services in a SPRING network.  The terminology used hereafter is in
   line with [RFC5286] and [RFC5714].

   The resiliency use cases described in this document can be applied
   not only to traffic that is forwarded according to the SPRING
   architecture, but also to traffic that originally is forwarded using
   other paradigms such as LDP signaling or pure IP traffic (IP-routed
   traffic).

   Three key alternatives are described: path protection, local
   protection without operator management, and local protection with
   operator management.

   Path protection lets the ingress node be in charge of the failure
   recovery, as discussed in Section 2.

   The rest of the document focuses on approaches where protection is
   performed by the node adjacent to the failed component, commonly
Show full document text