ECDHE_PSK with AES-GCM and AES-CCM Cipher Suites for TLS 1.2 and DTLS 1.2
RFC 8442
Internet Engineering Task Force (IETF) J. Mattsson
Request for Comments: 8442 D. Migault
Category: Standards Track Ericsson
ISSN: 2070-1721 September 2018
ECDHE_PSK with AES-GCM and AES-CCM Cipher Suites
for TLS 1.2 and DTLS 1.2
Abstract
This document defines several new cipher suites for version 1.2 of
the Transport Layer Security (TLS) protocol and version 1.2 of the
Datagram Transport Layer Security (DTLS) protocol. These cipher
suites are based on the Ephemeral Elliptic Curve Diffie-Hellman with
Pre-Shared Key (ECDHE_PSK) key exchange together with the
Authenticated Encryption with Associated Data (AEAD) algorithms
AES-GCM and AES-CCM. PSK provides light and efficient
authentication, ECDHE provides forward secrecy, and AES-GCM and
AES-CCM provide encryption and integrity protection.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8442.
Mattsson & Migault Standards Track [Page 1]
RFC 8442 ECDHE_PSK with AEAD for (D)TLS 1.2 September 2018
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................2
2. Requirements Notation ...........................................3
3. ECDHE_PSK with AES-GCM and AES-CCM Cipher Suites ................3
4. IANA Considerations .............................................4
5. Security Considerations .........................................4
6. References ......................................................5
6.1. Normative References .......................................5
6.2. Informative References .....................................6
Acknowledgements ...................................................7
Authors' Addresses .................................................7
1. Introduction
This document defines new cipher suites that provide Pre-Shared Key
(PSK) authentication, Perfect Forward Secrecy (PFS), and
Authenticated Encryption with Associated Data (AEAD). The cipher
suites are defined for version 1.2 of the Transport Layer Security
(TLS) protocol [RFC5246] and version 1.2 of the Datagram Transport
Layer Security (DTLS) protocol [RFC6347].
PSK authentication is widely used in many scenarios. One deployment
is 3GPP networks where pre-shared keys are used to authenticate both
subscriber and network. Another deployment is Internet of Things
where PSK authentication is often preferred for performance and
energy efficiency reasons. In both scenarios, the endpoints are
owned and/or controlled by a party that provisions the pre-shared
keys and makes sure that they provide a high level of entropy.
Perfect Forward Secrecy (PFS) is a strongly recommended feature in
security protocol design and can be accomplished by using an
ephemeral Diffie-Hellman key exchange method. Ephemeral Elliptic
Mattsson & Migault Standards Track [Page 2]
RFC 8442 ECDHE_PSK with AEAD for (D)TLS 1.2 September 2018
Curve Diffie-Hellman (ECDHE) provides PFS with excellent performance
and small key sizes. ECDHE is mandatory to implement in both HTTP/2
[RFC7540] and the Constrained Application Protocol (CoAP) [RFC7252].
AEAD algorithms that combine encryption and integrity protection are
strongly recommended for (D)TLS [RFC7525], and TLS 1.3 [RFC8446]
forbids the use of non-AEAD algorithms. The AEAD algorithms
considered in this document are AES-GCM and AES-CCM. The use of
AES-GCM in TLS is defined in [RFC5288], and the use of AES-CCM is
Show full document text