Address-Protected Neighbor Discovery for Low-Power and Lossy Networks
RFC 8928
Document | Type |
RFC - Proposed Standard
(November 2020; No errata)
Updates RFC 8505
Was draft-ietf-6lo-ap-nd (6lo WG)
|
|
---|---|---|---|
Authors | Pascal Thubert , Behcet Sarikaya , Mohit Sethi , Rene Struik | ||
Last updated | 2020-11-23 | ||
Replaces | draft-sarikaya-6lo-ap-nd | ||
Stream | IETF | ||
Formats | plain text html xml pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | Shwetha Bhandari | ||
Shepherd write-up | Show (last changed 2019-04-25) | ||
IESG | IESG state | RFC 8928 (Proposed Standard) | |
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Suresh Krishnan | ||
Send notices to | Shwetha Bhandari <shwethab@cisco.com>, Erik Kline <ek.ietf@gmail.com> | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | RFC-Ed-Ack |
Internet Engineering Task Force (IETF) P. Thubert, Ed. Request for Comments: 8928 Cisco Updates: 8505 B. Sarikaya Category: Standards Track ISSN: 2070-1721 M. Sethi Ericsson R. Struik Struik Security Consultancy November 2020 Address-Protected Neighbor Discovery for Low-Power and Lossy Networks Abstract This document updates the IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery (ND) protocol defined in RFCs 6775 and 8505. The new extension is called Address-Protected Neighbor Discovery (AP-ND), and it protects the owner of an address against address theft and impersonation attacks in a Low-Power and Lossy Network (LLN). Nodes supporting this extension compute a cryptographic identifier (Crypto-ID), and use it with one or more of their Registered Addresses. The Crypto-ID identifies the owner of the Registered Address and can be used to provide proof of ownership of the Registered Addresses. Once an address is registered with the Crypto-ID and a proof of ownership is provided, only the owner of that address can modify the registration information, thereby enforcing Source Address Validation. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8928. Copyright Notice Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction 2. Terminology 2.1. Requirements Language 2.2. Background 2.3. Abbreviations 3. Updating RFC 8505 4. New Fields and Options 4.1. New Crypto-ID 4.2. Updated EARO 4.3. Crypto-ID Parameters Option 4.4. NDP Signature Option 4.5. Extensions to the Capability Indication Option 5. Protocol Scope 6. Protocol Flows 6.1. First Exchange with a 6LR 6.2. NDPSO Generation and Verification 6.3. Multi-Hop Operation 7. Security Considerations 7.1. Brown Field 7.2. Threats Identified in RFC 3971 7.3. Related to 6LoWPAN ND 7.4. Compromised 6LR 7.5. ROVR Collisions 7.6. Implementation Attacks 7.7. Cross-Algorithm and Cross-Protocol Attacks 7.8. Public Key Validation 7.9. Correlating Registrations 8. IANA Considerations 8.1. CGA Message Type 8.2. Crypto-Type Subregistry 8.3. IPv6 ND Option Types 8.4. New 6LoWPAN Capability Bit 9. References 9.1. Normative References 9.2. Informative References Appendix A. Requirements Addressed in This Document Appendix B. Representation Conventions B.1. Signature Schemes B.2. Representation of ECDSA Signatures B.3. Representation of Public Keys Used with ECDSA B.4. Alternative Representations of Curve25519 Acknowledgments Authors' Addresses 1. Introduction Neighbor Discovery optimizations for 6LoWPAN networks (aka 6LoWPAN ND) [RFC6775] adapts the original IPv6 Neighbor Discovery protocols defined in [RFC4861] and [RFC4862] for constrained Low-Power and Lossy Networks (LLNs). In particular, 6LoWPAN ND introduces a unicast host Address Registration mechanism that reduces the use of multicast compared to the Duplicate Address Detection (DAD) mechanism defined in IPv6 ND. 6LoWPAN ND defines a new Address Registration Option (ARO) that is carried in the unicast Neighbor Solicitation (NS) and Neighbor Advertisement (NA) messages exchanged between a 6LoWPAN Node (6LN) and a 6LoWPAN Router (6LR). It also defines theShow full document text