Terminology for Constrained-Node Networks
draft-bormann-lwig-7228bis-00

Document Type Active Internet-Draft (individual)
Last updated 2016-10-30
Stream (None)
Intended RFC status (None)
Formats plain text pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
LWIG Working Group                                            C. Bormann
Internet-Draft                                   Universitaet Bremen TZI
Intended status: Informational                                  C. Gomez
Expires: May 3, 2017                                           UPC/i2CAT
                                                        October 30, 2016

               Terminology for Constrained-Node Networks
                     draft-bormann-lwig-7228bis-00

Abstract

   The Internet Protocol Suite is increasingly used on small devices
   with severe constraints on power, memory, and processing resources,
   creating constrained-node networks.  This document provides a number
   of basic terms that have been useful in the standardization work for
   constrained-node networks.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 3, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of

Bormann & Gomez            Expires May 3, 2017                  [Page 1]
Internet-Draft               CNN Terminology                October 2016

   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Core Terminology  . . . . . . . . . . . . . . . . . . . . . .   3
     2.1.  Constrained Nodes . . . . . . . . . . . . . . . . . . . .   3
     2.2.  Constrained Networks  . . . . . . . . . . . . . . . . . .   5
       2.2.1.  Challenged Networks . . . . . . . . . . . . . . . . .   6
     2.3.  Constrained-Node Networks . . . . . . . . . . . . . . . .   6
       2.3.1.  LLN . . . . . . . . . . . . . . . . . . . . . . . . .   7
       2.3.2.  LoWPAN, 6LoWPAN . . . . . . . . . . . . . . . . . . .   7
   3.  Classes of Constrained Devices  . . . . . . . . . . . . . . .   8
   4.  Power Terminology . . . . . . . . . . . . . . . . . . . . . .  10
     4.1.  Scaling Properties  . . . . . . . . . . . . . . . . . . .  10
     4.2.  Classes of Energy Limitation  . . . . . . . . . . . . . .  10
     4.3.  Strategies for Using Power for Communication  . . . . . .  11
   5.  Classes of Networks . . . . . . . . . . . . . . . . . . . . .  13
     5.1.  Classes of link layer MTU size  . . . . . . . . . . . . .  13
     5.2.  Class of Internet Integration . . . . . . . . . . . . . .  14
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
   8.  Informative References  . . . . . . . . . . . . . . . . . . .  15
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  18
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  18

1.  Introduction

   Small devices with limited CPU, memory, and power resources, so-
   called "constrained devices" (often used as sensors/actuators, smart
   objects, or smart devices) can form a network, becoming "constrained
   nodes" in that network.  Such a network may itself exhibit
   constraints, e.g., with unreliable or lossy channels, limited and
   unpredictable bandwidth, and a highly dynamic topology.

   Constrained devices might be in charge of gathering information in
   diverse settings, including natural ecosystems, buildings, and
   factories, and sending the information to one or more server
   stations.  They might also act on information, by performing some
   physical action, including displaying it.  Constrained devices may
   work under severe resource constraints such as limited battery and
   computing power, little memory, and insufficient wireless bandwidth
Show full document text