EVPN BUM Using BIER
draft-ietf-bier-evpn-11
The information below is for an old version of the document.
| Document | Type |
This is an older version of an Internet-Draft that was ultimately published as RFC 9624.
|
|
|---|---|---|---|
| Authors | Zhaohui (Jeffrey) Zhang , Tony Przygienda , Ali Sajassi , Jorge Rabadan | ||
| Last updated | 2023-11-29 (Latest revision 2023-11-27) | ||
| RFC stream | Internet Engineering Task Force (IETF) | ||
| Formats | |||
| Reviews | |||
| Additional resources | Mailing list discussion | ||
| Stream | WG state | Submitted to IESG for Publication | |
| Document shepherd | Mankamana Prasad Mishra | ||
| Shepherd write-up | Show Last changed 2023-11-29 | ||
| IESG | IESG state | Became RFC 9624 (Proposed Standard) | |
| Consensus boilerplate | Yes | ||
| Telechat date |
(None)
Needs a YES. Needs 5 more YES or NO OBJECTION positions to pass. |
||
| Responsible AD | Andrew Alston | ||
| Send notices to | mankamis@cisco.com | ||
| IANA | IANA review state | IANA - Not OK | |
| IANA expert review state | Reviews assigned |
draft-ietf-bier-evpn-11
BIER Z. Zhang
Internet-Draft A. Przygienda
Intended status: Standards Track Juniper Networks
Expires: 30 May 2024 A. Sajassi
Cisco Systems
J. Rabadan
Nokia
27 November 2023
EVPN BUM Using BIER
draft-ietf-bier-evpn-11
Abstract
This document specifies protocols and procedures for forwarding
broadcast, unknown unicast, and multicast (BUM) traffic of Ethernet
VPNs (EVPN) using Bit Index Explicit Replication (BIER).
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 30 May 2024.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
Zhang, et al. Expires 30 May 2024 [Page 1]
Internet-Draft bier-evpn November 2023
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Terminologies . . . . . . . . . . . . . . . . . . . . . . 3
2. Use of the PMSI Tunnel Attribute . . . . . . . . . . . . . . 4
2.1. IP-Based Tunnel and BIER PHP . . . . . . . . . . . . . . 5
2.2. Explicit Tracking . . . . . . . . . . . . . . . . . . . . 6
2.2.1. Using IMET/SMET routes . . . . . . . . . . . . . . . 6
2.2.2. Using S-PMSI/Leaf A-D Routes . . . . . . . . . . . . 6
2.3. MPLS Label in PTA . . . . . . . . . . . . . . . . . . . . 7
3. Multihoming Split Horizon . . . . . . . . . . . . . . . . . . 8
4. Data Plane . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1. Encapsulation and Transmission . . . . . . . . . . . . . 8
4.1.1. At a BFIR that is an Ingress PE . . . . . . . . . . . 8
4.1.2. At a BFIR that is a P-tunnel Segmentation Point . . . 10
4.2. Disposition . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1. At a BFER that is an Egress PE . . . . . . . . . . . 11
4.2.2. At a BFER that is a P-tunnel Segmentation Point . . . 11
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11
6. Security Considerations . . . . . . . . . . . . . . . . . . . 12
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 12
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 12
8.1. Normative References . . . . . . . . . . . . . . . . . . 12
8.2. Informative References . . . . . . . . . . . . . . . . . 14
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 14
1. Introduction
[RFC7432] and [RFC8365] specify the protocols and procedures for
Ethernet VPNs (EVPNs). For broadcast, unknown unicast and multicast
(BUM) traffic, provider/underlay tunnels are used to carry the BUM
traffic. Several kinds of tunnel technologies can be used as
specified in [RFC7432] and [RFC8365], and this document specifies the
protocols and procedures to use Bit Index Explicit Replication (BIER)
[RFC8279] as P-tunnels for EVPN BUM traffic.
Zhang, et al. Expires 30 May 2024 [Page 2]
Internet-Draft bier-evpn November 2023
BIER is an architecture that provides optimal multicast forwarding
through a "multicast domain", without requiring intermediate routers
to maintain any per-flow state or to engage in an explicit tree-
building protocol.
The EVPN BUM procedures specified in [RFC7432] and extended in
[I-D.ietf-bess-evpn-bum-procedure-updates], [RFC9251], and
[I-D.zzhang-bess-mvpn-evpn-cmcast-enhancements] are much aligned with
Multicast VPN (MVPN) procedures [RFC6514] and an EVPN Broadcast
Domain corresponds to a VPN in MVPN. As such, this document is also
very much aligned with [RFC8556]. For terseness, some background,
terms and concepts are not repeated here. Additionally, some text is
borrowed verbatim from [RFC8556].
1.1. Terminologies
* AC: Attachment Circuit.
* ES: Ethernet Segment.
* ESI: Ethernet Segment Identifier.
* BFR: Bit-Forwarding Router.
* BFIR: Bit-Forwarding Ingress Router.
* BFER: Bit-Forwarding Egress Router.
* BFR-Prefix: An IP address that uniquely identifies a BFR and is
routable in a BIER domain.
* C-S: A multicast source address identifying a multicast source
located at an EVPN customer site. "C-" stands for "Customer-".
* C-G: A multicast group address used by an EVPN customer.
* C-flow: A customer multicast flow. Each C-flow is identified by
the ordered pair (source address, group address), where each
address is in the customer's address space. The identifier of a
particular C-flow is usually written as (C-S, C-G). Sets of
C-flows can be identified by the use of the "C-*" wildcard (see
[RFC6625]), e.g., (C-*, C-G).
* P-tunnel. A multicast tunnel through the network of one or more
SPs used to transport C-flows. "P-" stands for "Provider-".
Zhang, et al. Expires 30 May 2024 [Page 3]
Internet-Draft bier-evpn November 2023
* IMET Route: Inclusive Multicast Ethernet Tag Auto-Discovery route.
Carried in BGP Update messages, these routes are used to advertise
the "default" P-tunnel for a particular broadcast domain.
* SMET Route: Selective Multicast Ethernet Tag Auto-Discovery route.
Carried in BGP Update messages, these routes are used to advertise
the C-flows that the advertising PE is interested in.
* S-PMSI A-D route: Selective Provider Multicast Service Interface
Auto-Discovery route. Carried in BGP Update messages, these
routes are used to advertise the fact that particular C-flows are
bound to (i.e., are traveling through) particular P-tunnels.
* PMSI Tunnel attribute (PTA): A BGP attribute used to identify a
particular P-tunnel.
2. Use of the PMSI Tunnel Attribute
[RFC7432] specifies that Inclusive Multicast Ethernet Tag (IMET)
routes carry a PMSI Tunnel Attribute (PTA) to identify the particular
P-tunnel to which one or more BUM flows are being assigned, the same
as specified in [RFC6514] for MVPN. [RFC8556] specifies the encoding
of PTA for the use of BIER with MVPN. Much of that specification is
reused for the use of BIER with EVPN and much of the text below is
borrowed verbatim from [RFC8556].
The PMSI Tunnel Attribute (PTA) contains the following fields:
* "Tunnel Type". The same codepoint 0x0B that IANA has assigned for
BIER for MVPN [RFC8556] is used for EVPN as well.
* "Tunnel Identifier". This field contains three subfields for
BIER. The text below is exactly as in [RFC8556].
1 The first subfield is a single octet, containing the sub-
domain-id of the sub-domain to which the BFIR will assign the
packets that it transmits on the PMSI identified by the NLRI of
the IMET, S-PMSI A-D, or per-region I-PMSI A-D route that
contains this PTA. How that sub-domain is chosen is outside
the scope of this document.
2 The second subfield is a two-octet field containing the BFR-id,
in the sub-domain identified in the first subfield, of the
router that is constructing the PTA.
Zhang, et al. Expires 30 May 2024 [Page 4]
Internet-Draft bier-evpn November 2023
3 The third subfield is the BFR-Prefix (see [RFC8279]) of the
originator of the route that is carrying this PTA. This will
either be a /32 IPv4 address or a /128 IPv6 address. Whether
the address is IPv4 or IPv6 can be inferred from the total
length of the PMSI Tunnel attribute.
The BFR-prefix need not be the same IP address that is carried
in any other field of the x-PMSI A-D route, even if the BFIR is
the originating router of the x-PMSI A-D route.
* "MPLS label". For EVPN-MPLS [RFC7432], this field contains an
upstream-assigned MPLS label. It is assigned by the BFIR.
Constraints on how the originating router selects this label are
discussed in Section 2.3. For EVPN-VXLAN/NVGRE/GENEVE [RFC8365]
[RFC7348] [RFC7637] [RFC8926], this field is a 24-bit VNI/VSID of
global significance.
* "Flags". When the tunnel type is BIER, two of the flags in the
PTA Flags field are meaningful. Details about the use of these
flags can be found in Section 2.2.
- "Leaf Info Required per Flow (LIR-pF)" [RFC8534]
- "Leaf Info Required Bit (LIR)"
Note that if a PTA specifying "BIER" is attached to an IMET, S-PMSI
A-D, or per-region I-PMSI A-D route, the route MUST NOT be
distributed beyond the boundaries of a BIER domain. That is, any
routers that receive the route must be in the same BIER domain as the
originator of the route. If the originator is in more than one BIER
domain, the route must be distributed only within the BIER domain in
which the BFR-Prefix in the PTA uniquely identifies the originator.
As with all MVPN routes, the distribution of these routes is
controlled by the provisioning of Route Targets.
2.1. IP-Based Tunnel and BIER PHP
When VXLAN/NVGRE/GENEVE is used for EVPN, by default the outer IP
header (and UDP header in the case of VXLAN/GENEVE) is not included
in the BIER payload, except when it is known apriori that BIER
Penultimate Hop Popping (PHP) [I-D.ietf-bier-php] is used in the BIER
domain and the encapsulation (after the BIER header is popped)
between the BIER Penultimate Hop and the egress PE does not have a
way to indicate the next header is VXLAN/NVGRE/GENEVE. In that case
the full VXLAN/NVGRE/GENEVE encapsulation with an IP header MUST be
included in the BIER payload. A well-known IP multicast address (to
be assigned by IANA) is used as the destination address and the
egress PEs MUST be set up to receive and process packets addressed to
Zhang, et al. Expires 30 May 2024 [Page 5]
Internet-Draft bier-evpn November 2023
the address. The address is used for all Bridge Domains (BDs) and
the inner VXLAN/NVGRE/GENEVE header will be used to identify BDs.
2.2. Explicit Tracking
When using BIER to transport an EVPN BUM data packet through a BIER
domain, an ingress PE functions as a BFIR (see [RFC8279]). The BFIR
must determine the set of BFERs to which the packet needs to be
delivered. This can be done in either of two ways in the following
two sections.
2.2.1. Using IMET/SMET routes
Both IMET and SMET routes provide explicit tracking functionality.
For an inclusive PMSI, the set of BFERs (egress PEs) includes the
originators of all IMET routes for a broadcast domain. For a
selective PMSI, the set of BFERs (egress PEs) includes the
originators of corresponding SMET routes.
The SMET routes do not carry a PTA. When an ingress PE sends traffic
on a selective tunnel using BIER, it uses the upstream-assigned label
that is advertised in its IMET route.
Only when selectively forwarding is for all flows without tunnel
segmentation, SMET routes are used without the need for S-PMSI A-D
routes. Otherwise, the procedures in the following section apply.
2.2.2. Using S-PMSI/Leaf A-D Routes
There are two cases where S-PMSI/Leaf A-D routes are used as
discussed in the following two sections.
2.2.2.1. Selective Forwarding Only for Some Flows
With the SMET procedure, a PE advertises an SMET route for each (C-S,
C-G) or (C-*, C-G) state that it learns on its Attachment Circuits
(ACs), and each SMET route is tracked by every PE in the same
broadcast domain. It may be desired that SMET routes are not used to
reduce the burden of explicit tracking.
In this case, most multicast traffic will follow the I-PMSI
(advertised via IMET route) and only some flows follow S-PMSIs. To
achieve that, S-PMSI/Leaf A-D routes can be used, as specified in
[I-D.ietf-bess-evpn-bum-procedure-updates].
The rules specified in Section 2.2.1 and Section 2.2.2 of [RFC8556]
apply.
Zhang, et al. Expires 30 May 2024 [Page 6]
Internet-Draft bier-evpn November 2023
2.2.2.2. Tunnel Segmentation
Another case where S-PMSI/Leaf A-D routes are necessary is tunnel
segmentation, which is also specified in
[I-D.ietf-bess-evpn-bum-procedure-updates], and further clarified in
[I-D.zzhang-bess-mvpn-evpn-cmcast-enhancements] for segmentation with
SMET routes. This is only applicable to EVPN-MPLS.
The rules specified in Section 2.2.1 of [RFC8556] apply.
Section 2.2.2 of [RFC8556] does not apply, because like in MVPN, the
LIR-pF flag cannot be used with segmentation.
2.2.2.3. Applicability of Additional MVPN Specifications
As with the MVPN case, Section "3. Use of the PMSI Tunnel Attribute
in Leaf A-D routes" of [RFC8556] apply.
Notice that, [RFC8556] refers to procedures specified in [RFC6625]
and [RFC8534]. Those two documents were specified for MVPN but apply
to IP multicast payload in EVPN as well.
2.3. MPLS Label in PTA
Rules in section 2.1 of [RFC8556] apply, EXCEPT the following three
bullets (they do NOT apply to EVPN) in that section:
* If the two routes do not have the same Address Family Identifier
(AFI) value, then their respective PTAs MUST contain different
MPLS label values. This ensures that when an egress PE receives a
data packet with the given label, the egress PE can infer from the
label whether the payload is an IPv4 packet or an IPv6 packet.
* If the BFIR is an ingress PE supporting MVPN extranet ([RFC7900])
functionality, and if the two routes originate from different VRFs
on this ingress PE, then the respective PTAs of the two routes
MUST contain different MPLS label values.
* If the BFIR is an ingress PE supporting the "Extranet Separation"
feature of MVPN extranet (see Section 7.3 of [RFC7900]), and if
one of the routes carries the "Extranet Separation" extended
community but the other does not, then the respective PTAs of the
two routes MUST contain different MPLS label values.
Zhang, et al. Expires 30 May 2024 [Page 7]
Internet-Draft bier-evpn November 2023
3. Multihoming Split Horizon
For EVPN-MPLS, [RFC7432] specifies the use of ESI labels to identify
the ES from which a BUM packet originates. A PE receiving that
packet from the core side will not forward it to the same ES. The
procedure works for both Ingress Replication (IR) and RSVP-TE/mLDP
P2MP tunnels, using downstream- and upstream-assigned ESI labels
respectively. For EVPN-VXLAN/NVGRE/GENEVE, [RFC8365] specifies local
bias procedures, with which a PE receiving a BUM packet from the core
side knows from encapsulation the ingress PE so it does not forward
the packet to any multihoming ESes that the ingress PE is on, because
the ingress PE already forwarded the packet to those ESes, regardless
of whether the ingress PE is a DF for those ESes.
With BIER, the local bias procedure still applies for EVPN-
VXLAN/NVGRE/GENEVE as the BFIR-id in the BIER header identifies the
ingress PE. For EVPN-MPLS, ESI label procedures also still apply
though two upstream-assigned labels will be used (one for identifying
the broadcast domain and one for identifying the ES) - the same as in
the case of using a single P2MP tunnel for multiple broadcast
domains. The BFIR-id in the BIER header identifies the ingress PE
that assigned those two labels.
4. Data Plane
Like MVPN, the EVPN application plays the role of the "multicast flow
overlay" as described in [RFC8279].
4.1. Encapsulation and Transmission
A BFIR could be either an ingress PE or a P-tunnel segmentation
point. The procedures are slightly different as described below.
4.1.1. At a BFIR that is an Ingress PE
To transmit a BUM data packet, an ingress PE first determines the
route matched for transmission and routes for tracking leaves
according to the following rules.
1. If selective forwarding is not used, or it is not an IP Multicast
packet after the ethernet header, the IMET route originated for
the BD by the ingress PE is the route matched for transmission.
Leaf tracking routes are all other received IMET routes for the
BD.
Zhang, et al. Expires 30 May 2024 [Page 8]
Internet-Draft bier-evpn November 2023
2. Otherwise, if selective forwarding is used for all IP Multicast
traffic based on SMET routes, the IMET route originated for the
BD by the ingress PE is the route matched for transmission.
Received SMET routes for the BD that best match the source and
destination IP address are leaf tracking routes.
3. Otherwise, the route matched for transmission is the S-PMSI A-D
route originated by the ingress PE for the BD, which best matches
the packet's source and destination IP address and has a PTA
specifying a valid tunnel type that is not "no tunnel info".
Leaf tracking routes are determined as follows:
1) If the match for transmission route carries a PTA that has
the LIR flag set but does not have the LIR-pF flag set, the
routes matched for tracking are Leaf A-D routes whose "route
key" field is identical to the NLRI of the S-PMSI A-D route.
2) If the match for transmission route carries a PTA that has
the LIR-pF flag, the leaf tracking routes are Leaf A-D routes
whose "route key" field is derived from the NLRI of the
S-PMSI A-D route according to the procedures described in
Section 5.2 of [RFC8534].
Note that in both cases, SMET routes may be used in lieu of Leaf
A-D routes, as a PE may omit the Leaf A-D route in response to an
S-PMSI A-D route with LIR or LIR-pF bit set, if an SMET route
with the corresponding Tag, Source, and Group fields is already
originated [I-D.ietf-bess-evpn-bum-procedure-updates]. In
particular, in the second case above, even though the SMET route
does not have a PTA attached, it is still considered as a Leaf
A-D route in response to a wildcard S-PMSI A-D route with the
LIR-pF bit set.
4. Otherwise, the route matched for transmission and leaf tracking
routes are determined as in rule 1.
If no route is matched for transmission, the packet is not forwarded
onto a P-tunnel. If the tunnel that the ingress determines to use
based on the route matched for transmission (and considering
interworking with PEs that do not support certain tunnel types per
procedures in [RFC9251]) requires leaf tracking (e.g. Ingress
Replication, RSVP-TE P2MP tunnel, or BIER) but there are no leaf
tracking routes, the packet will not be forwarded onto a P-tunnel
either.
The following text assumes that BIER is the determined tunnel type.
The ingress PE pushes an upstream-assigned ESI label per [RFC7432] if
the following conditions are all met:
Zhang, et al. Expires 30 May 2024 [Page 9]
Internet-Draft bier-evpn November 2023
* The packet is received on a multihomed ES.
* It's EVPN-MPLS.
* ESI label procedure is used for split-horizon.
The MPLS label from the PTA of the route matched for transmission is
then pushed onto the packet's label stack for EVPN-MPLS. For EVPN-
VXLAN/NVGRE/GENEVE, a VXLAN/NVGRE/GENEVE header is prepended to the
packet with the VNI/VSID set to the value in the PTA's label field,
and then an IP/UDP header is prepended if needed (e.g. for PHP
purpose).
Then the packet is encapsulated in a BIER header and forwarded,
according to the procedures of [RFC8279] and [RFC8296]. See
especially Section 4, "Imposing and Processing the BIER
Encapsulation", of [RFC8296]. The "Proto" field in the BIER header
is set to 2 in the case of EVPN-MPLS, or a value to be assigned in
the case of EVPN-VXLAN/NVGRE/GENEVE (Section 5) when an IP header is
not used, or 4/6 if an IP header is used for EVPN-VXLAN/NVGRE/GENEVE.
To create the proper BIER header for a given packet, the BFIR must
know all the BFERs that need to receive that packet. This is
determined from the set of leaf tracking routes.
4.1.2. At a BFIR that is a P-tunnel Segmentation Point
In this case, the encapsulation for the upstream segment of the
P-tunnel includes (among other things) a label that identifies the
x-PMSI or IMET A-D route that is the match for reception on the
upstream segment. The segmentation point re-advertised the route
into one or more downstream regions. Each instance of the re-
advertised route for a downstream region has a PTA that specifies
tunnel information that is the same as or different from that of the
route for a different region. For any particular downstream region,
the route matched for transmission is the re-advertised route, and
the leaf tracking routes are determined as follows if needed for the
tunnel type:
* If the route matched for transmission is an x-PMSI route, it must
have the LIR flag set in its PTA and the leaf tracking routes are
all the matching Leaf A-D and SMET routes received in the
downstream region.
* If the route matched for transmission is an IMET route, the leaf
tracking routes are all the IMET routes for the same BD received
in the downstream region.
Zhang, et al. Expires 30 May 2024 [Page 10]
Internet-Draft bier-evpn November 2023
If the downstream region uses BIER, the packet is forwarded as
follows: the upstream segmentation's encapsulation is removed and the
above-mentioned label is swapped to the upstream-assigned label in
the PTA of the route matched for transmission, and then a BIER header
is imposed as in Section 4.1.1.
4.2. Disposition
The same procedures in section 4.2 of [RFC8556] are followed for
EVPN-MPLS, except some EVPN specifics discussed in the following two
sub-sections in this document.
For EVPN-VXLAN/NVGRE/GENEVE, the only difference is that the payload
is VXLAN/NVGRE/GENEVE (with or without an IP header) and the VNI/VSID
field in the VXLAN/NVGRE/GENEVE header is used to determine the
corresponding broadcast domain.
4.2.1. At a BFER that is an Egress PE
Once the corresponding broadcast domain is determined from the
upstream-assigned label or VNI/VSID, EVPN forwarding procedures per
[RFC7432] or [RFC8365] are followed. In the case of EVPN-MPLS, if
there is an inner label in the label stack following the BIER header,
that inner label is considered as the upstream-assigned ESI label for
split horizon purpose.
4.2.2. At a BFER that is a P-tunnel Segmentation Point
This is only applicable to EVPN-MPLS. The same procedures in
Section 4.2.2 of [RFC8556] are followed, subject to multihoming
procedures specified in [I-D.ietf-bess-evpn-bum-procedure-updates].
5. IANA Considerations
This document requests three assignments in "BIER Next Protocol
Identifiers" registry, with the following three recommended values:
* 7: Payload is VXLAN encapsulated (no IP/UDP header)
* 8: Payload is NVGRE encapsulated (no IP header)
* 9: Payload is GENEVE encapsulated (no IP/UDP header)
This document requests assignments of an IPv4 and an IPv6 multicast
address for the case discussed in Section 2.1. Preferably this is
assigned from the Local Network Control Block (224.0.0/24) for IPv4
and Link-Local Scope Multicast Addresses for IPv6. The description
is "NVO BUM Traffic".
Zhang, et al. Expires 30 May 2024 [Page 11]
Internet-Draft bier-evpn November 2023
6. Security Considerations
This document is about using BIER as provider tunnels for EVPN. It
is very similar to using BIER as MVPN provider tunnel, and does not
introduce additional security implications beyond what have been
discussed in EVPN base protocol specification [RFC7432] and MVPN
using BIER [RFC8556].
7. Acknowledgements
The authors thank Eric Rosen for his review and suggestions.
Additionally, much of the text is borrowed verbatim from [RFC8556].
8. References
8.1. Normative References
[I-D.ietf-bess-evpn-bum-procedure-updates]
Zhang, Z. J., Lin, W., Rabadan, J., Patel, K., and A.
Sajassi, "Updates on EVPN BUM Procedures", Work in
Progress, Internet-Draft, draft-ietf-bess-evpn-bum-
procedure-updates-14, 18 November 2021,
<https://datatracker.ietf.org/doc/html/draft-ietf-bess-
evpn-bum-procedure-updates-14>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC6514] Aggarwal, R., Rosen, E., Morin, T., and Y. Rekhter, "BGP
Encodings and Procedures for Multicast in MPLS/BGP IP
VPNs", RFC 6514, DOI 10.17487/RFC6514, February 2012,
<https://www.rfc-editor.org/info/rfc6514>.
[RFC6625] Rosen, E., Ed., Rekhter, Y., Ed., Hendrickx, W., and R.
Qiu, "Wildcards in Multicast VPN Auto-Discovery Routes",
RFC 6625, DOI 10.17487/RFC6625, May 2012,
<https://www.rfc-editor.org/info/rfc6625>.
[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
2015, <https://www.rfc-editor.org/info/rfc7432>.
Zhang, et al. Expires 30 May 2024 [Page 12]
Internet-Draft bier-evpn November 2023
[RFC7900] Rekhter, Y., Ed., Rosen, E., Ed., Aggarwal, R., Cai, Y.,
and T. Morin, "Extranet Multicast in BGP/IP MPLS VPNs",
RFC 7900, DOI 10.17487/RFC7900, June 2016,
<https://www.rfc-editor.org/info/rfc7900>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8279] Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
Przygienda, T., and S. Aldrin, "Multicast Using Bit Index
Explicit Replication (BIER)", RFC 8279,
DOI 10.17487/RFC8279, November 2017,
<https://www.rfc-editor.org/info/rfc8279>.
[RFC8296] Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation
for Bit Index Explicit Replication (BIER) in MPLS and Non-
MPLS Networks", RFC 8296, DOI 10.17487/RFC8296, January
2018, <https://www.rfc-editor.org/info/rfc8296>.
[RFC8365] Sajassi, A., Ed., Drake, J., Ed., Bitar, N., Shekhar, R.,
Uttaro, J., and W. Henderickx, "A Network Virtualization
Overlay Solution Using Ethernet VPN (EVPN)", RFC 8365,
DOI 10.17487/RFC8365, March 2018,
<https://www.rfc-editor.org/info/rfc8365>.
[RFC8534] Dolganow, A., Kotalwar, J., Rosen, E., Ed., and Z. Zhang,
"Explicit Tracking with Wildcard Routes in Multicast VPN",
RFC 8534, DOI 10.17487/RFC8534, February 2019,
<https://www.rfc-editor.org/info/rfc8534>.
[RFC8556] Rosen, E., Ed., Sivakumar, M., Przygienda, T., Aldrin, S.,
and A. Dolganow, "Multicast VPN Using Bit Index Explicit
Replication (BIER)", RFC 8556, DOI 10.17487/RFC8556, April
2019, <https://www.rfc-editor.org/info/rfc8556>.
[RFC8926] Gross, J., Ed., Ganga, I., Ed., and T. Sridhar, Ed.,
"Geneve: Generic Network Virtualization Encapsulation",
RFC 8926, DOI 10.17487/RFC8926, November 2020,
<https://www.rfc-editor.org/info/rfc8926>.
[RFC9251] Sajassi, A., Thoria, S., Mishra, M., Patel, K., Drake, J.,
and W. Lin, "Internet Group Management Protocol (IGMP) and
Multicast Listener Discovery (MLD) Proxies for Ethernet
VPN (EVPN)", RFC 9251, DOI 10.17487/RFC9251, June 2022,
<https://www.rfc-editor.org/info/rfc9251>.
Zhang, et al. Expires 30 May 2024 [Page 13]
Internet-Draft bier-evpn November 2023
8.2. Informative References
[I-D.ietf-bier-php]
Zhang, Z. J., "BIER Penultimate Hop Popping", Work in
Progress, Internet-Draft, draft-ietf-bier-php-10, 9 March
2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
bier-php-10>.
[I-D.zzhang-bess-mvpn-evpn-cmcast-enhancements]
Zhang, Z. J., Kebler, R., Lin, W., and E. C. Rosen, "MVPN/
EVPN C-Multicast Routes Enhancements", Work in Progress,
Internet-Draft, draft-zzhang-bess-mvpn-evpn-cmcast-
enhancements-03, 1 September 2023,
<https://datatracker.ietf.org/doc/html/draft-zzhang-bess-
mvpn-evpn-cmcast-enhancements-03>.
[RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3
Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
<https://www.rfc-editor.org/info/rfc7348>.
[RFC7637] Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
Virtualization Using Generic Routing Encapsulation",
RFC 7637, DOI 10.17487/RFC7637, September 2015,
<https://www.rfc-editor.org/info/rfc7637>.
Authors' Addresses
Zhaohui Zhang
Juniper Networks
Email: zzhang@juniper.net
Antoni Przygienda
Juniper Networks
Email: prz@juniper.net
Ali Sajassi
Cisco Systems
Email: sajassi@cisco.com
Jorge Rabadan
Nokia
Email: jorge.rabadan@nokia.com
Zhang, et al. Expires 30 May 2024 [Page 14]