PW Endpoint Fast Failure Protection
draft-ietf-pals-endpoint-fast-protection-04

The information below is for an old version of the document
Document Type Active Internet-Draft (pals WG)
Authors Yimin Shen  , Rahul Aggarwal  , Wim Henderickx  , Yuanlong Jiang 
Last updated 2016-12-15 (latest revision 2016-11-13)
Replaces draft-ietf-pwe3-endpoint-fast-protection
Stream IETF
Intended RFC status Proposed Standard
Formats pdf htmlized (tools) htmlized bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Stewart Bryant
Shepherd write-up Show (last changed 2016-08-03)
IESG IESG state IESG Evaluation::Revised I-D Needed
Consensus Boilerplate Yes
Telechat date
Needs 7 more YES or NO OBJECTION positions to pass.
Responsible AD Deborah Brungard
Send notices to "Stewart Bryant" <stewart.bryant@gmail.com>
IANA IANA review state IANA OK - Actions Needed
Internet Engineering Task Force                               Yimin Shen
Internet-Draft                                          Juniper Networks
Intended status: Standards Track                          Rahul Aggarwal
Expires: May 17, 2017                                        Arktan, Inc
                                                          Wim Henderickx
                                                          Alcatel-Lucent
                                                          Yuanlong Jiang
                                                     Huawei Technologies
                                                       November 13, 2016

                  PW Endpoint Fast Failure Protection
              draft-ietf-pals-endpoint-fast-protection-04

Abstract

   This document specifies a fast mechanism for protecting pseudowires
   against egress endpoint failures, including egress attachment circuit
   failure, egress PE failure, multi-segment PW terminating PE failure,
   and multi-segment PW switching PE failure.  Operating on the basis of
   multi-homed CE, redundant PWs, upstream label assignment and context
   specific label switching, the mechanism enables local repair to be
   performed by the router upstream adjacent to a failure.  The router
   can restore a PW in the order of tens of milliseconds, by rerouting
   traffic around the failure to a protector through a pre-established
   bypass tunnel.  Therefore, the mechanism can be used to reduce
   traffic loss before global repair reacts to the failure and the
   network converges on the topology changes due to the failure.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 17, 2017.

Yimin Shen, et al.        Expires May 17, 2017                  [Page 1]
Internet-Draft     PW Endpoint Fast Failure Protection     November 2016

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Specification of Requirements . . . . . . . . . . . . . . . .   4
   3.  Reference Models for Egress Endpoint Failures . . . . . . . .   4
     3.1.  Single-Segment PW . . . . . . . . . . . . . . . . . . . .   4
     3.2.  Multi-Segment PW  . . . . . . . . . . . . . . . . . . . .   8
   4.  Theory of Operation . . . . . . . . . . . . . . . . . . . . .   9
     4.1.  Applicability . . . . . . . . . . . . . . . . . . . . . .   9
     4.2.  Local Repair and Protector  . . . . . . . . . . . . . . .  10
     4.3.  Context Identifier  . . . . . . . . . . . . . . . . . . .  13
       4.3.1.  Semantics . . . . . . . . . . . . . . . . . . . . . .  13
       4.3.2.  FEC . . . . . . . . . . . . . . . . . . . . . . . . .  14
       4.3.3.  IGP Advertisement and Path Computation  . . . . . . .  15
     4.4.  Protection Models . . . . . . . . . . . . . . . . . . . .  16
       4.4.1.  Co-located Protector  . . . . . . . . . . . . . . . .  16
       4.4.2.  Centralized Protector . . . . . . . . . . . . . . . .  17
     4.5.  Transport Tunnel  . . . . . . . . . . . . . . . . . . . .  19
     4.6.  Bypass Tunnel . . . . . . . . . . . . . . . . . . . . . .  20
     4.7.  Examples of Forwarding State  . . . . . . . . . . . . . .  21
       4.7.1.  Co-located Protector Model  . . . . . . . . . . . . .  21
       4.7.2.  Centralized Protector Model . . . . . . . . . . . . .  24
   5.  Revertive Behavior  . . . . . . . . . . . . . . . . . . . . .  27
   6.  LDP Extensions  . . . . . . . . . . . . . . . . . . . . . . .  28
     6.1.  Egress Protection Capability TLV  . . . . . . . . . . . .  29
     6.2.  PW Label Distribution from Primary PE to Protector  . . .  30
     6.3.  PW Label Distribution from Backup PE to Protector . . . .  31
Show full document text