Information-centric Routing for Opportunistic Wireless Networks
draft-mendes-icnrg-dabber-00

Document Type Active Internet-Draft (individual)
Last updated 2018-02-23
Stream (None)
Intended RFC status (None)
Formats plain text pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
ICN Research Group                                              P.Mendes
Internet-Draft                              COPELABS/University Lusofona
Intended Status: Experimental                                 Rute Sofia
Expires: August 27, 2018         Senception/COPELABS/University Lusofona
                                                    Vassilis Tsaoussidis
                                                  Sotiris Diamantopoulos
                                              Christos-Alexandros Sarros
                                         Democritus University of Thrace
                                                       February 23, 2018

    Information-centric Routing for Opportunistic Wireless Networks
                      draft-mendes-icnrg-dabber-00

Abstract

   This draft describes the Data reAchaBility BasEd Routing (DABBER)
   protocol, which has been developed to extend the reached of Named
   Data Networking based routing approaches to opportunistic wireless
   networks. By "opportunistic wireless networks" it is meant multi-hop
   wireless networks where finding an end-to-end path between any pair
   of nodes at any moment in time may be a challenge. The goal is to
   assist in better defining opportunities for the transmission of
   Interest packets towards the most suitable data source, based on
   metrics that provide information about: i) the availability of
   different data sources; ii) the availability and centrality of
   neighbor nodes; iii) the time lapse between forwarding Interest
   packets and receiving the corresponding data packets. The document
   presents an architectural overview of DABBER followed by
   specification options related to the dissemination of name-prefix
   information to support the computation of next hops, and the ranking
   of forwarding options based on the best set of neighbors to ensure a
   short time-to-completion.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute 
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
 

Mendes, et al.          Expires August 27, 2018                 [Page 1]
Internet-Draft                   dabber                February 23, 2018

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 27, 2018.

Copyright and License Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors. All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document. Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . .  4
     1.1. Contextual Aspects  . . . . . . . . . . . . . . . . . . . .  5
     1.2. Applicability . . . . . . . . . . . . . . . . . . . . . . .  6
     1.3. NFD Adjustment to Opportunistic Networks  . . . . . . . . .  7
     1.4. Conventions . . . . . . . . . . . . . . . . . . . . . . . .  8
   2. DABBER Architecture . . . . . . . . . . . . . . . . . . . . . .  9
     2.1. Assumptions and Requirements  . . . . . . . . . . . . . . . 10
     2.2. Naming  . . . . . . . . . . . . . . . . . . . . . . . . . . 11
     2.3. LSA Dissemination . . . . . . . . . . . . . . . . . . . . . 12
     2.4. Multiple path Computation . . . . . . . . . . . . . . . . . 13
       2.4.1. Cost Computation  . . . . . . . . . . . . . . . . . . . 14
       2.4.2. RIB Update with Face Selection  . . . . . . . . . . . . 14
       2.4.3. FIB Update with Face Ranking  . . . . . . . . . . . . . 15
       2.4.4. LSDB Updates  . . . . . . . . . . . . . . . . . . . . . 16
     2.5. Loop Prevention . . . . . . . . . . . . . . . . . . . . . . 17
   3. Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . 17
     3.1. Overall Operation Example . . . . . . . . . . . . . . . . . 17
     3.2. Peer Discovery and Face Setup . . . . . . . . . . . . . . . 19
     3.3. LSA Exchange  . . . . . . . . . . . . . . . . . . . . . . . 20
Show full document text