Routing Requirements for Urban Low-Power and Lossy Networks
RFC 5548
Network Working Group M. Dohler, Ed.
Request for Comments: 5548 CTTC
Category: Informational T. Watteyne, Ed.
BSAC, UC Berkeley
T. Winter, Ed.
Eka Systems
D. Barthel, Ed.
France Telecom R&D
May 2009
Routing Requirements for Urban Low-Power and Lossy Networks
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.
Abstract
The application-specific routing requirements for Urban Low-Power and
Lossy Networks (U-LLNs) are presented in this document. In the near
future, sensing and actuating nodes will be placed outdoors in urban
environments so as to improve people's living conditions as well as
to monitor compliance with increasingly strict environmental laws.
These field nodes are expected to measure and report a wide gamut of
data (for example, the data required by applications that perform
smart-metering or that monitor meteorological, pollution, and allergy
conditions). The majority of these nodes are expected to communicate
wirelessly over a variety of links such as IEEE 802.15.4, low-power
IEEE 802.11, or IEEE 802.15.1 (Bluetooth), which given the limited
radio range and the large number of nodes requires the use of
suitable routing protocols. The design of such protocols will be
mainly impacted by the limited resources of the nodes (memory,
processing power, battery, etc.) and the particularities of the
outdoor urban application scenarios. As such, for a wireless
Dohler, et al. Informational [Page 1]
RFC 5548 Routing Requirements for U-LLNs May 2009
solution for Routing Over Low-Power and Lossy (ROLL) networks to be
useful, the protocol(s) ought to be energy-efficient, scalable, and
autonomous. This documents aims to specify a set of IPv6 routing
requirements reflecting these and further U-LLNs' tailored
characteristics.
Table of Contents
1. Introduction ....................................................3
2. Terminology .....................................................3
2.1. Requirements Language ......................................4
3. Overview of Urban Low-Power and Lossy Networks ..................4
3.1. Canonical Network Elements .................................4
3.1.1. Sensors .............................................4
3.1.2. Actuators ...........................................5
3.1.3. Routers .............................................6
3.2. Topology ...................................................6
3.3. Resource Constraints .......................................7
3.4. Link Reliability ...........................................7
4. Urban LLN Application Scenarios .................................8
4.1. Deployment of Nodes ........................................8
4.2. Association and Disassociation/Disappearance of Nodes ......9
4.3. Regular Measurement Reporting ..............................9
4.4. Queried Measurement Reporting .............................10
4.5. Alert Reporting ...........................................11
5. Traffic Pattern ................................................11
6. Requirements of Urban-LLN Applications .........................13
6.1. Scalability ...............................................13
6.2. Parameter-Constrained Routing .............................13
6.3. Support of Autonomous and Alien Configuration .............14
6.4. Support of Highly Directed Information Flows ..............15
6.5. Support of Multicast and Anycast ..........................15
6.6. Network Dynamicity ........................................16
6.7. Latency ...................................................16
7. Security Considerations ........................................16
8. References .....................................................18
Show full document text