Skip to main content

DNS Query Name Minimisation to Improve Privacy
draft-ietf-dnsop-qname-minimisation-09

The information below is for an old version of the document that is already published as an RFC.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7816.
Author Stéphane Bortzmeyer
Last updated 2020-01-21 (Latest revision 2016-01-08)
Replaces draft-bortzmeyer-dns-qname-minimisation
RFC stream Internet Engineering Task Force (IETF)
Intended RFC status Experimental
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Tim Wicinski
Shepherd write-up Show Last changed 2015-10-12
IESG IESG state Became RFC 7816 (Experimental)
Action Holders
(None)
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Joel Jaeggli
Send notices to (None)
IANA IANA review state Version Changed - Review Needed
IANA action state No IANA Actions
draft-ietf-dnsop-qname-minimisation-09
Domain Name System Operations (dnsop) Working Group        S. Bortzmeyer
Internet-Draft                                                     AFNIC
Intended status: Experimental                            January 8, 2016
Expires: July 11, 2016

             DNS query name minimisation to improve privacy
                 draft-ietf-dnsop-qname-minimisation-09

Abstract

   This document describes a technique to improve DNS privacy, a
   technique called "QNAME minimisation", where the DNS resolver no
   longer sends the full original QNAME to the upstream name server.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on July 11, 2016.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Bortzmeyer                Expires July 11, 2016                 [Page 1]
Internet-Draft             Qname minimisation               January 2016

Table of Contents

   1.  Introduction and background . . . . . . . . . . . . . . . . .   2
   2.  QNAME minimisation  . . . . . . . . . . . . . . . . . . . . .   3
   3.  Possible issues . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Protocol and compatibility discussion . . . . . . . . . . . .   5
   5.  Operational considerations  . . . . . . . . . . . . . . . . .   5
   6.  Performance considerations  . . . . . . . . . . . . . . . . .   6
   7.  On the experimentation  . . . . . . . . . . . . . . . . . . .   6
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
   10. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   7
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .   7
     11.1.  Normative References . . . . . . . . . . . . . . . . . .   7
     11.2.  Informative References . . . . . . . . . . . . . . . . .   8
     11.3.  URIs . . . . . . . . . . . . . . . . . . . . . . . . . .   9
   Appendix A.  An algorithm to perform QNAME minimisation . . . . .   9
   Appendix B.  Alternatives . . . . . . . . . . . . . . . . . . . .  10
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  10

1.  Introduction and background

   The problem statement is described in [RFC7626].  The terminology
   ("QNAME", "resolver", etc) is also defined in this companion
   document.  This specific solution is not intended to fully solve the
   DNS privacy problem; instead, it should be viewed as one tool amongst
   many.

   QNAME minimisation follows the principle explained in section 6.1 of
   [RFC6973]: the less data you send out, the fewer privacy problems you
   have.

   Currently, when a resolver receives the query "What is the AAAA
   record for www.example.com?", it sends to the root (assuming a cold
   resolver, whose cache is empty) the very same question.  Sending the
   full QNAME to the authoritative name server is a tradition, not a
   protocol requirement.  This tradition comes [mockapetris-history]
   from a desire to optimize the number of requests, when the same name
   server is authoritative for many zones in a given name (something
   which was more common in the old days, where the same name servers
   served .com and the root) or when the same name server is both
   recursive and authoritative (something which is strongly discouraged
   now).  Whatever the merits of this choice at this time, the DNS is
   quite different now.

Bortzmeyer                Expires July 11, 2016                 [Page 2]
Internet-Draft             Qname minimisation               January 2016

2.  QNAME minimisation

   The idea is to minimise the amount of data sent from the DNS resolver
   to the authoritative name server.  In the example in the previous
   section, sending "What are the NS records for .com?" would have been
   sufficient (since it will be the answer from the root anyway).  The
   rest of this section describes the recommended way to do QNAME
   minimisation, the one which maximimes privacy benefits (other
   alternatives are discussed in appendixes).

   A resolver which implements QNAME minimisation, and which does not
   have already the answer in its cache, instead of sending the full
   QNAME and the original QTYPE upstream, sends a request to the name
   server authoritative for the closest known ancestor of the original
   QNAME.  The request is done with:

      the QTYPE NS,

      the QNAME which is the original QNAME, stripped to just one label
      more than the zone for which the server is authoritative.

   For example, a resolver receives a request to resolve
   foo.bar.baz.example.  Let's assume it already knows that
   ns1.nic.example is authoritative for .example and the resolver does
   not know a more specific authoritative name server.  It will send the
   query QTYPE=NS,QNAME=baz.example to ns1.nic.example.

   The minimising resolver works perfectly when it knows the zone cut
   (zone cuts are described in section 6 of [RFC2181]).  But zone cuts
   do not necessarily exist at every label boundary.  If we take the
   name www.foo.bar.example, it is possible that there is a zone cut
   between "foo" and "bar" but not between "bar" and "example".  So,
   assuming the resolver already knows the name servers of .example,
   when it receives the query "What is the AAAA record of
   www.foo.bar.example", it does not always know where the zone cut will
   be.  To find it out, it will query the .example name servers for the
   NS records for bar.example.  It will get a NODATA response,
   indicating there is no zone cut at that point, so it has to to query
   the .example name servers again with one more label, and so on.
   (Appendix A describes this algorithm in deeper details.)

   Since the information about the zone cuts will be stored in the
   resolver's cache, the performance cost is probably reasonable.
   Section 6 discusses this performance discrepancy further.

   Note that DNSSEC-validating resolvers already have access to this
   information, since they have to know the zone cut (the DNSKEY record
   set is just below, the DS record set just above).

Bortzmeyer                Expires July 11, 2016                 [Page 3]
Internet-Draft             Qname minimisation               January 2016

3.  Possible issues

   QNAME minimisation is legal, since the original DNS RFC do not
   mandate sending the full QNAME.  So, in theory, it should work
   without any problems.  However, in practice, some problems may occur
   (see an analysis in [huque-qnamemin] and an interesting discussion in
   [huque-qnamestorify]).

   Some broken name servers do not react properly to qtype=NS requests.
   For instance, some authoritative name servers embedded in load
   balancers reply properly to A queries but send REFUSED to NS queries.
   This behaviour is a protocol violation, and there is no need to stop
   improving the DNS because of such behaviour.  However, QNAME
   minimisation may still work with such domains since they are only
   leaf domains (no need to send them NS requests).  Such setup breaks
   more than just QNAME minimisation.  It breaks negative answers, since
   the servers don't return the correct SOA, and it also breaks anything
   dependent upon NS and SOA records existing at the top of the zone.

   Another way to deal with such incorrect name servers would be to try
   with QTYPE=A requests (A being chosen because it is the most common
   and hence a qtype which will be always accepted, while a qtype NS may
   ruffle the feathers of some middleboxes).  Instead of querying name
   servers with a query "NS example.com", we could use "A _.example.com"
   and see if we get a referral.

   A problem can also appear when a name server does not react properly
   to ENT (Empty Non-Terminals).  If ent.example.com has no resource
   records but foobar.ent.example.com does, then ent.example.com is an
   ENT.  A query, whatever the qtype, for ent.example.com must return
   NODATA (NOERROR / ANSWER: 0).  However, some name servers incorrectly
   return NXDOMAIN for ENTs.  If a resolver queries only
   foobar.ent.example.com, everything will be OK but, if it implements
   QNAME minimisation, it may query ent.example.com and get a NXDOMAIN.
   See also section 3 of [I-D.vixie-dnsext-resimprove] for the other bad
   consequences of this bad behaviour.

   A possible solution, currently implemented in Knot, is to retry with
   the full query when you receive a NXDOMAIN.  It works but it is not
   ideal for privacy.

   Other practices that do not conform to the DNS protocol standards may
   pose a problem: there is a common DNS trick used by some Web hosters
   that also do DNS hosting that exploits the fact that the DNS protocol
   (pre-DNSSEC) allows certain serious misconfigurations, such as parent
   and child zones disagreeing on the location of a zone cut.
   Basically, they have a single zone with wildcards for each TLD like:

Bortzmeyer                Expires July 11, 2016                 [Page 4]
Internet-Draft             Qname minimisation               January 2016

   *.example.          60  IN  A   192.0.2.6

   (They could just wildcard all of "*.", which would be sufficient.  We
   don't know why they don't do it.)

   This lets them have many Web hosting customers without having to
   configure thousands of individual zones on their nameservers.  They
   just tell the prospective customer to point their NS records at the
   hoster's nameservers, and the Web hoster doesn't have to provision
   anything in order to make the customer's domain resolve.  NS queries
   to the hoster will therefore not give the right result, which may
   endanger QNAME minimisation (it will be a problem for DNSSEC, too).

4.  Protocol and compatibility discussion

   QNAME minimisation is compatible with the current DNS system and
   therefore can easily be deployed; since it is a unilateral change to
   the resolver, it does not change the protocol.  (Because it is an
   unilateral change, resolver implementers may do QNAME minimisation in
   slightly different ways, see the appendices for examples.)

   One should note that the behaviour suggested here (minimising the
   amount of data sent in QNAMEs from the resolver) is NOT forbidden by
   the [RFC1034] (section 5.3.3) or [RFC1035] (section 7.2).  As said in
   Section 1, the current method, sending the full QNAME, is not
   mandated by the DNS protocol.

   It may be noticed that many documents explaining the DNS and intended
   for a wide audience, incorrectly describe the resolution process as
   using QNAME minimisation, for instance by showing a request going to
   the root, with just the TLD in the query.  As a result, these
   documents may confuse the privacy analysis of the users who see them.

5.  Operational considerations

   The administrators of the forwarders, and of the authoritative name
   servers, will get less data, which will reduce the utility of the
   statistics they can produce (such as the percentage of the various
   QTYPEs) [kaliski-minimum].

   DNS administrators are reminded that the data on DNS requests that
   they store may have legal consequences, depending on your
   jurisdiction (check with your local lawyer).

Bortzmeyer                Expires July 11, 2016                 [Page 5]
Internet-Draft             Qname minimisation               January 2016

6.  Performance considerations

   The main goal of QNAME minimisation is to improve privacy by sending
   less data.  However, it may have other advantages.  For instance, if
   a root name server receives a query from some resolver for A.example
   followed by B.example followed by C.example, the result will be three
   NXDOMAINs, since .example does not exist in the root zone.  Under
   query name minimisation, the root name servers would hear only one
   question (for .example itself) to which they could answer NXDOMAIN,
   thus opening up a negative caching opportunity in which the full
   resolver could know a priori that neither B.example or C.example
   could exist.  Thus in this common case the total number of upstream
   queries under QNAME minimisation would be counter-intuitively less
   than the number of queries under the traditional iteration (as
   described in the DNS standard).

   QNAME minimisation may also improve look-up performance for TLD
   operators.  For a typical TLD, delegation-only, and with delegations
   just under the TLD, a 2-label QNAME query is optimal for finding the
   delegation owner name.

   QNAME minimisation can decrease performance in some cases, for
   instance for a deep domain name (like
   www.host.group.department.example.com where
   host.group.department.example.com is hosted on example.com's name
   servers).  Let's assume a resolver which knows only the name servers
   of .example.  Without QNAME minimisation, it would send these
   .example nameservers a query for
   www.host.group.department.example.com and immediately get a specific
   referral or an answer, without the need for more queries to probe for
   the zone cut.  For such a name, a cold resolver with QNAME
   minimisation will, depending how QNAME minimisation is implemented,
   send more queries, one per label.  Once the cache is warm, there will
   be no difference with a traditional resolver.  Actual testing is
   described in [huque-qnamemin].  Such deep domains are specially
   common under ip6.arpa.

7.  On the experimentation

   This document has status "Experimental".  Since the beginning of time
   (or DNS), the fully qualified host name was always sent to the
   authoritative name servers.  There was a concern that changing this
   behavior may engage the Law of Unintended Consequences.  Hence this
   status.

   The idea about the experiment is to observe QNAME minimisation in
   action with multiple resolvers, various authoritative name servers,
   etc.

Bortzmeyer                Expires July 11, 2016                 [Page 6]
Internet-Draft             Qname minimisation               January 2016

8.  IANA Considerations

   This document has no actions for IANA.

9.  Security Considerations

   QNAME minimisation's benefits are clear in the case where you want to
   decrease exposure to the authoritative name server.  But minimising
   the amount of data sent also, in part, addresses the case of a wire
   sniffer as well as the case of privacy invasion by the servers.
   (Encryption is of course a better defense against wire sniffers but,
   unlike QNAME minimisation, it changes the protocol and cannot be
   deployed unilaterally.  Also, the effect of QNAME minimisation on
   wire sniffers depends on whether the sniffer is, on the DNS path.)

   QNAME minimisation offers zero protection against the recursive
   resolver, which still sees the full request coming from the stub
   resolver.

   All the alternatives mentioned in Appendix B decrease privacy in the
   hope of improving performance.  They must not be used if you want the
   maximum privacy.

10.  Acknowledgments

   Thanks to Olaf Kolkman for the original idea during a KLM flight from
   Amsterdam to Vancouver, although the concept is probably much older
   [1].  Thanks for Shumon Huque and Marek Vavrusa for implementation
   and testing.  Thanks to Mark Andrews and Francis Dupont for the
   interesting discussions.  Thanks to Brian Dickson, Warren Kumari,
   Evan Hunt and David Conrad for remarks and suggestions.  Thanks to
   Mohsen Souissi for proofreading.  Thanks to Tony Finch for the zone
   cut algorithm in Appendix A and for discussion of the algorithm.
   Thanks to Paul Vixie for pointing out that there are practical
   advantages (besides privacy) to QNAME minimisation.  Thanks to
   Phillip Hallam-Baker for the fallback on A queries, to deal with
   broken servers.  Thanks to Robert Edmonds for an interesting anti-
   pattern.

11.  References

11.1.  Normative References

   [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
              <http://www.rfc-editor.org/info/rfc1034>.

Bortzmeyer                Expires July 11, 2016                 [Page 7]
Internet-Draft             Qname minimisation               January 2016

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
              November 1987, <http://www.rfc-editor.org/info/rfc1035>.

   [RFC6973]  Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
              Morris, J., Hansen, M., and R. Smith, "Privacy
              Considerations for Internet Protocols", RFC 6973, DOI
              10.17487/RFC6973, July 2013,
              <http://www.rfc-editor.org/info/rfc6973>.

   [RFC7626]  Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
              DOI 10.17487/RFC7626, August 2015,
              <http://www.rfc-editor.org/info/rfc7626>.

11.2.  Informative References

   [RFC2181]  Elz, R. and R. Bush, "Clarifications to the DNS
              Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
              <http://www.rfc-editor.org/info/rfc2181>.

   [I-D.wkumari-dnsop-hammer]
              Kumari, W., Arends, R., Woolf, S., and D. Migault, "Highly
              Automated Method for Maintaining Expiring Records", draft-
              wkumari-dnsop-hammer-01 (work in progress), July 2014.

   [I-D.vixie-dnsext-resimprove]
              Vixie, P., Joffe, R., and F. Neves, "Improvements to DNS
              Resolvers for Resiliency, Robustness, and Responsiveness",
              draft-vixie-dnsext-resimprove-00 (work in progress), June
              2010.

   [mockapetris-history]
              Mockapetris, P., "Private discussion", January 2015.

   [kaliski-minimum]
              Kaliski, B., "Minimum Disclosure: What Information Does a
              Name Server Need to Do Its Job?", March 2015,
              <http://blogs.verisigninc.com/blog/entry/
              minimum_disclosure_what_information_does>.

   [huque-qnamemin]
              Huque, S., "Query name minimization and authoritative
              server behavior", May 2015, <https://indico.dns-
              oarc.net/event/21/contribution/9>.

   [huque-qnamestorify]
              Huque, S., "Qname Minimization @ DNS-OARC", May 2015,
              <https://storify.com/shuque/qname-minimization-dns-oarc>.

Bortzmeyer                Expires July 11, 2016                 [Page 8]
Internet-Draft             Qname minimisation               January 2016

11.3.  URIs

   [1] https://lists.dns-oarc.net/pipermail/dns-
       operations/2010-February/005003.html

Appendix A.  An algorithm to perform QNAME minimisation

   This algorithm performs name resolution with QNAME minimisation in
   presence of not-yet-known zone cuts.

   Although a validating resolver already has the logic to find the zone
   cut, other resolvers may be interested by this algorithm to follow in
   order to locate the cuts.  This is just a possible help for
   implementors, it is not intended to be normative:

      (0) If the query can be answered from the cache, do so, otherwise
      iterate as follows:

      (1) Find closest enclosing NS RRset in your cache.  The owner of
      this NS RRset will be a suffix of the QNAME - the longest suffix
      of any NS RRset in the cache.  Call this ANCESTOR.

      (2) Initialize CHILD to the same as ANCESTOR.

      (3) If CHILD is the same as the QNAME, resolve the original query
      using ANCESTOR's name servers, and finish.

      (4) Otherwise, add a label from the QNAME to the start of CHILD.

      (5) If you have a negative cache entry for the NS RRset at CHILD,
      go back to step 3.

      (6) Query for CHILD IN NS using ANCESTOR's name servers.  The
      response can be:

         (6a) A referral.  Cache the NS RRset from the authority section
         and go back to step 1.

         (6b) An authoritative answer.  Cache the NS RRset from the
         answer section and go back to step 1.

         (6c) An NXDOMAIN answer.  Return an NXDOMAIN answer in response
         to the original query and stop.

         (6d) A NOERROR/NODATA answer.  Cache this negative answer and
         go back to step 3.

Bortzmeyer                Expires July 11, 2016                 [Page 9]
Internet-Draft             Qname minimisation               January 2016

Appendix B.  Alternatives

   Remember that QNAME minimisation is unilateral so a resolver is not
   forced to implement it exactly as described here.

   There are several ways to perform QNAME minimisation.  The one in
   Section 2 is the suggested one.  It can be called the aggressive
   algorithm, since the resolver only sends NS queries as long as it
   does not know the zone cuts.  This is the safest, from a privacy
   point of view.  Another possible algorithm, not fully studied at this
   time, could be to "piggyback" on the traditional resolution code.  At
   startup, it sends traditional full QNAMEs and learns the zone cuts
   from the referrals received, then switches to NS queries asking only
   for the minimum domain name.  This leaks more data but could require
   fewer changes in the existing resolver codebase.

   In the above specification, the original QTYPE is replaced by NS (or
   may be A, if too many servers react incorrectly to NS requests),
   which is the best approach to preserve privacy.  But this erases
   information about the relative use of the various QTYPEs, which may
   be interesting for researchers (for instance if they try to follow
   IPv6 deployment by counting the percentage of AAAA vs. A queries).  A
   variant of QNAME minimisation would be to keep the original QTYPE.

   Another useful optimisation may be, in the spirit of the HAMMER idea
   [I-D.wkumari-dnsop-hammer] to probe in advance for the introduction
   of zone cuts where none previously existed (i.e. confirm their
   continued absence, or discover them.)

   To address the "number of queries" issue, described in Section 6, a
   possible solution is to always use the traditional algorithm when the
   cache is cold and then to move to QNAME minimisation (precisely
   defining what is "hot" or "cold" is left to the implementer).  This
   will decrease the privacy but will guarantee no degradation of
   performance.

Author's Address

   Stephane Bortzmeyer
   AFNIC
   1, rue Stephenson
   Montigny-le-Bretonneux  78180
   France

   Phone: +33 1 39 30 83 46
   Email: bortzmeyer+ietf@nic.fr
   URI:   http://www.afnic.fr/

Bortzmeyer                Expires July 11, 2016                [Page 10]