Skip to main content

A YANG Network Model for Service Attachment Points (SAPs)
draft-ietf-opsawg-sap-13

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 9408.
Authors Mohamed Boucadair , Oscar Gonzalez de Dios , Samier Barguil , Qin Wu , Victor Lopez
Last updated 2023-01-09
Replaces draft-dbwb-opsawg-sap
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Adrian Farrel
Shepherd write-up Show Last changed 2022-07-20
IESG IESG state Became RFC 9408 (Proposed Standard)
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Robert Wilton
Send notices to adrian@olddog.co.uk
IANA IANA review state Version Changed - Review Needed
IANA expert review state Expert Reviews OK
draft-ietf-opsawg-sap-13
OPSAWG                                                 M. Boucadair, Ed.
Internet-Draft                                                    Orange
Intended status: Standards Track                     O. Gonzalez de Dios
Expires: 13 July 2023                                         Telefonica
                                                              S. Barguil
                                                                   Nokia
                                                                   Q. Wu
                                                                  Huawei
                                                                V. Lopez
                                                                   Nokia
                                                          9 January 2023

       A YANG Network Model for Service Attachment Points (SAPs)
                        draft-ietf-opsawg-sap-13

Abstract

   This document defines a YANG data model for representing an abstract
   view of the provider network topology that contains the points from
   which its services can be attached (e.g., basic connectivity, VPN,
   network slices).  Also, the model can be used to retrieve the points
   where the services are actually being delivered to customers
   (including peer networks).

   This document augments the 'ietf-network' data model by adding the
   concept of Service Attachment Points (SAPs).  The SAPs are the
   network reference points to which network services, such as Layer 3
   Virtual Private Network (L3VPN) or Layer 2 Virtual Private Network
   (L2VPN), can be attached.  One or multiple services can be bound to
   the same SAP.  Both User-Network Interface (UNI) and Network-to-
   Network Interface (NNI) are supported in the SAP data model.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

Boucadair, et al.         Expires 13 July 2023                  [Page 1]
Internet-Draft            A YANG Model for SAPs             January 2023

   This Internet-Draft will expire on 13 July 2023.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Sample SAP Network Model Usage  . . . . . . . . . . . . . . .   5
   4.  Relationship to Other YANG Data Models  . . . . . . . . . . .   8
   5.  SAP Module Tree Structure . . . . . . . . . . . . . . . . . .   9
   6.  SAP YANG Module . . . . . . . . . . . . . . . . . . . . . . .  14
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  21
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  22
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  23
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  23
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  23
     10.2.  Informative References . . . . . . . . . . . . . . . . .  25
   Appendix A.  A Simplified SAP Network Example . . . . . . . . . .  28
   Appendix B.  A Simple Example of SAP Network Model: Node
           Filter  . . . . . . . . . . . . . . . . . . . . . . . . .  33
   Appendix C.  An Example of NNI SAP: Inter-AS VPN Option A . . . .  38
   Appendix D.  Examples of Using the SAP Network Model in Service
           Creation  . . . . . . . . . . . . . . . . . . . . . . . .  42
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  43

1.  Introduction

   Service providers offer a variety of network services to their
   customers.  Such services include, but are not limited to, Virtual
   Private Networks (VPNs), Software-Defined Wide Area Network (SDWAN)
   [I-D.ietf-bess-bgp-sdwan-usage], and network slices
   [I-D.ietf-teas-ietf-network-slices].  In order to rationalize the
   overall service operations and allow for more automated service
   provisioning procedures, service providers need to maintain a view on
   where services can be delivered to customers.  Such a view can be

Boucadair, et al.         Expires 13 July 2023                  [Page 2]
Internet-Draft            A YANG Model for SAPs             January 2023

   used, e.g., to feed an intelligence that is responsible for service
   order handling, service feasibility checks, tracking per-service
   coverage, etc.  To that aim, this document introduces the concept of
   Service Attachment Points (SAPs).

   The SAPs represent the network reference points where network
   services can be delivered to customers.  For example, this concept is
   used to decide where to attach and, thus, deliver the service in the
   Layer 3 VPN Service Model (L3SM) [RFC8299] and the Layer 2 VPN
   Service Model (L2SM) [RFC8466].  It can also be used to retrieve
   where such services are delivered to customers through the network
   configuration described in the Layer 3 VPN Network Model (L3NM)
   [RFC9182] and the Layer 2 VPN Network Model (L2NM) [RFC9291].

   This document defines a YANG network model (Section 6) for
   representing, managing, and controlling the SAPs.  The data model
   augments the 'ietf-network' module [RFC8345] by adding the concept of
   SAPs.  Section 3 provides a sample usage of the model.  This document
   explains the scope and purpose of a SAP network model and its
   relation with other models (Section 4).

   A network may support multiple services, potentially of different
   types.  Whether a SAP topology is dedicated to services of a specific
   service type, an individual service, or shared among many services of
   different types is deployment specific.  This document supports all
   of these deployment schemes.

   This document does not make any assumption about the services
   provided by a network to its users.  VPN services (e.g., Layer 3
   Virtual Private Network (L3VPN) or Layer 2 Virtual Private Network
   (L2VPN)) [RFC4026] are used for illustration purposes (Appendices A
   and B).

   Given that User-Network Interface (UNI) and Network-to-Network
   Interface (NNI) are reference points that are widely used by
   operators to indicate the demarcation points when delivering
   services, both UNI and NNI SAPs are supported in the document.  The
   reader may refer, e.g., to [MEF6], [MEF17], [RFC6004], or [RFC6215]
   for a discussion on the use of UNI and NNI reference points.  An
   example of NNI usage in a VPN context is provided in Appendix C.

   The YANG data model in Section 6 conforms to the Network Management
   Datastore Architecture (NMDA) [RFC8342].

Boucadair, et al.         Expires 13 July 2023                  [Page 3]
Internet-Draft            A YANG Model for SAPs             January 2023

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This document assumes that the reader is familiar with the contents
   of [RFC6241], [RFC7950], [RFC8345], and [RFC8309].  The document uses
   terms from those documents.

   The meanings of the symbols in tree diagrams are defined in
   [RFC8340].

   This document uses the term "network model" defined in Section 2.1 of
   [RFC8969].

   This document uses the following terms:

   Service provider:  The organization responsible for operating the
      network that offers a service (e.g., a VPN) to customers.

   Attachment Circuit (AC):  A channel that connects a Customer Edge
      (CE) to a Provider Edge (PE).  The AC may be a physical or logical
      link (Section 6.1 of [RFC4026]).

   Customer Edge (CE):  An equipment that is dedicated to a particular
      customer and is directly connected to one or more PEs via ACs.  A
      CE is usually located at the customer premises.  A CE may be
      dedicated to a single service (e.g., L3VPN), although it may
      support multiple VPNs if each one has separate attachment
      circuits.  A CE can be a router, a bridge, a switch, etc.

   Provider Edge (PE):  An equipment owned and managed by the service
      provider that can support multiple services (e.g., VPNs) for
      different customers.  A PE is directly connected to one or more
      CEs via ACs.

   Service Attachment Points (SAPs):  An abstraction of the network
      reference points (e.g., PE side of an AC, CE side of an AC for a
      provider-managed CE) where network services can be delivered and/
      or are delivered to customers.  A SAP can be bound to one or
      multiple ACs.

Boucadair, et al.         Expires 13 July 2023                  [Page 4]
Internet-Draft            A YANG Model for SAPs             January 2023

3.  Sample SAP Network Model Usage

   Management operations of a service provider network can be automated
   using a variety of means such as interfaces based on YANG modules
   [RFC8969][RFC6241][RFC8040].  From that standpoint, and considering
   the architecture depicted in Figure 1, a goal of this document is to
   provide a mechanism to show via a YANG-based interface an abstracted
   network view from the network controller to the service orchestration
   layer with a focus on where a service can be delivered to customers.
   The model is also used to retrieve the network reference points where
   a service is being delivered to customers.  For services that require
   resources from peer networks, the module can also be used to expose
   NNIs.

                               +-----------------+
                               |     Customer    |
                               +--------+--------+
               Customer Service Models  |
                  (e.g., L3SM, L2SM)    |
                               +--------+--------+
                               |    Service      |
                               |  Orchestration  |
                               +------+---+------+
                   Network Models     |   | SAP Network Model
                 (e.g., L3NM, L2NM)   |   |
                               +------+---+------+
                               |     Network     |
                               |   Controller    |
                               +--------+--------+
                                        |
                  +---------------------+---------------------+
                  |                  Network                  |
                  +-------------------------------------------+

                     Figure 1: SAP Network Model Usage

   The service orchestration layer does not need to know about all the
   internals of the underlying network (e.g., P nodes).  Figure 2 shows
   the abstract network view as seen by a service orchestrator.
   However, this view is not enough to provide to the service
   orchestration layer the information to create services in the
   network.  The service topology need is to be able to expose the set
   of nodes and the attachment points associated with the nodes from
   which network services can be grafted (delivered).

Boucadair, et al.         Expires 13 July 2023                  [Page 5]
Internet-Draft            A YANG Model for SAPs             January 2023

                     .---------.          .---------.
                     |   PE1   |          |   PE2   |
                     '---------'          '---------'
                                \        /
                                 \------/
                                 (      )
                                (        )
                                 (      )
                                 /------\
                               /         \
                     .---------.          .---------.
                     |   PE3   |          |   PE4   |
                     '---------'          '---------'

                    Figure 2: Abstract Network Topology

   Typically, and focusing on the UNIs, the service orchestration layer
   would see a set of PEs and a set of client-facing interfaces
   (physical or logical) to which CEs can be connected (or are actually
   connected).  Such interfaces are also referred to as UNI-N (User-to-
   Network Interface, Network side) [RFC6215].  The service
   orchestration layer can use these interfaces to set up the requested
   services or to commit the delivery of a service.  Figure 3 depicts a
   sample SAP network topology that is maintained by the network
   controller and exposed to the service orchestration.

                 .-+-. .-+-. .-+-.              .-+-.       .-+-.
               .-|sap|-|sap|-|sap|-.          .-|sap|-------|sap|-.
               | '---' '---' '---' |          | '---'       '---' |
             .---.                 |          |                   |
             |sap|      PE1        |          |         PE2       |
             '---'                 |          |                   |
               |                   |          |                   |
               '-------------------'          '-------------------'

               .-------------------.          .-------------------.
               |                   |          |                   |
               |                   |          |                 .---.
               |         PE3       |          |        PE4      |sap|
               |                   |          |                 '---'
               | .---. .---. .---. |          | .---. .---. .---. |
               '-|sap|-|sap|-|sap|-'          '-|sap|-|sap|-|sap|-'
                 '-+-' '-+-' '-+-'              '-+-' '-+-' '-+-'

                      Figure 3: A SAP Network Topology

Boucadair, et al.         Expires 13 July 2023                  [Page 6]
Internet-Draft            A YANG Model for SAPs             January 2023

   A single SAP network topology can be used for one or multiple service
   types (e.g., L3VPN, Ethernet VPN (EVPN)).  The network controller
   can, then, expose the service types and associated interfaces via the
   SAPs.

   As shown in Figure 4, the service orchestration layer will have also
   access to a set of customer service model (e.g., the L3SM or the
   L2SM) in the customer-facing interface and a set of network models
   (e.g., the L3NM and network topology data models) in the resource-
   facing interface.  In this use case, it is assumed that the network
   controller is unaware of what happens beyond the PEs towards the CEs;
   it is only responsible for the management and control of the SAPs and
   the network between PEs.  In order to correlate between delivery
   points expressed in service requests and SAPs, the SAP model may
   include a peer customer point identifier.  That identifier can be a
   CE identifier, a site identifier, etc.

                                                        .---.
                                                        |CE2|
                                                        '-+-'
                                                          |
             .-+-. .-+-. .-+-.              .-+-.       .-+-.
           .-|sap|-|sap|-|sap|-.          .-|sap|-------|sap|-.
           | '---' '---' '---' |          | '---'       '---' |
  .---.  .---.                 |          |                   |
  |CE1+--+sap|      PE1        |          |         PE2       |
  '---'  '---'                 |          |                   |
           |                   |          |                   |
           '-------------------'          '-------------------'

           .-------------------.          .-------------------.
           |                   |          |                   |
           |                   |          |                 .---.  .---.
           |         PE3       |          |        PE4      |sap+--+CE5|
           |                   |          |                 '---'  '---'
           | .---. .---. .---. |          | .---. .---. .---. |
           '-|sap|-|sap|-|sap|-'          '-|sap|-|sap|-|sap|-'
             '-+-' '-+-' '-+-'              '-+-' '-+-' '-+-'
                           |                  |     |
                         .-+-.                |   .-+-.
                         |CE3+----------------'   |CE4|
                         '---'                    '---'

               Figure 4: Network Topology with CEs and ACs

   Refer to Appendix A for an example echoing the topology depicted in
   Figure 4.

Boucadair, et al.         Expires 13 July 2023                  [Page 7]
Internet-Draft            A YANG Model for SAPs             January 2023

4.  Relationship to Other YANG Data Models

   The SAP network model can be seen as inventory data associated with
   SAPs.  The model maintains an inventory of customer-facing nodes
   contained in a network relying upon [RFC8345].

                              +-------------------------+
                              |                         |
                              |  Abstract Network Model |
                              |                         |
                              +------------+------------+
                                           |
                                 +---------+---------+
                                 |                   |
                          +------V------+     +------V------+
                          |  Abstract   |     |  Inventory  |
                          |  Network    |     |    Models   |
                          |  Topology   |     |   e.g., SAP |
                          |   Model     |     |   Network   |
                          |             |     |    Model    |
                          +-----+-------+     +-------------+
                                |
                    +-----------+-----------+
                    |           |           |
               +----V----+ +----V----+ +----V----+
               |TE Topo  | |L3 Topo  | |L2 Topo  |
               |  Model  | |  Model  | |  Model  | ...
               +---------+ +---------+ +---------+

          Figure 5: Relation of SAP Network Model to Other Models

   Figure 5 depicts the relationship of the SAP network model to other
   models.  The SAP network model augments the Network model [RFC8345]
   and imports the Network Topology model, while other technology-
   specific topology models (e.g., Traffic Engineering (TE) Topologies
   model [RFC8795] or Layer 3 Topologies model [RFC8346]) augment the
   Network Topology model.

   SAPs can be seen as customer-facing termination points (TPs) with
   specific service provisions.  However, a difference between SAPs and
   TPs is that links are terminated by a single TP (Section 4.4.6 of
   [RFC8345]) while an AC can be terminated by multiple SAPs.  Also, a
   SAP is not a tunnel termination point (TTP) (Section 3.6 of
   [RFC8795]) nor a link.

   In the context of Software-Defined Networking (SDN)
   [RFC7149][RFC7426], the SAP YANG data model can be used to exchange
   information between control elements, so as to support VPN service

Boucadair, et al.         Expires 13 July 2023                  [Page 8]
Internet-Draft            A YANG Model for SAPs             January 2023

   provision and resource management discussed in [RFC9182][RFC9291].
   Through this data model, the service orchestration layer can learn
   the available endpoints (i.e., SAPs) of interconnection resources of
   the underlying network.  The service orchestration layer can
   determine which interconnection endpoints to add to an L2VPN or L3VPN
   service.  With the help of other data models (e.g., L3SM [RFC8299] or
   L2SM [RFC8466]), hierarchical control elements can also assess the
   feasibility of an end-to-end IP connectivity or L2VPN connectivity
   and, therefore, derive the sequence of domains and the points of
   interconnection to use.

   Advanced interface-specific data nodes are not included in the SAP
   model.  The interface identifiers listed in the SAP model can be used
   as filters to set or get such data using device models (e.g.,
   [RFC7224]).

5.  SAP Module Tree Structure

   The SAP network model 'ietf-sap-ntw' builds on the 'ietf-network'
   module [RFC8345] by augmenting the nodes with SAPs.

   The structure of the 'ietf-sap-ntw' module is shown in Figure 6.

Boucadair, et al.         Expires 13 July 2023                  [Page 9]
Internet-Draft            A YANG Model for SAPs             January 2023

          module: ietf-sap-ntw
            augment /nw:networks/nw:network/nw:network-types:
              +--rw sap-network!
                 +--rw service-type*   identityref
            augment /nw:networks/nw:network/nw:node:
              +--rw service* [service-type]
                 +--rw service-type                   identityref
                 +--rw sap* [sap-id]
                    +--rw sap-id                      string
                    +--rw description?                string
                    +--rw parent-termination-point?   nt:tp-id
                    +--rw attachment-interface?       string
                    +--rw interface-type?             identityref
                    +--rw encapsulation-type?         identityref
                    +--rw role?                       identityref
                    +--rw allows-child-saps?          boolean
                    +--rw peer-sap-id*                string
                    +--ro sap-status
                    |  +--ro status?        identityref
                    |  +--ro last-change?   yang:date-and-time
                    +--rw service-status
                       +--rw admin-status
                       |  +--rw status?        identityref
                       |  +--rw last-change?   yang:date-and-time
                       +--ro oper-status
                          +--ro status?        identityref
                          +--ro last-change?   yang:date-and-time

                  Figure 6: SAP YANG Module Tree Structure

   A SAP network topology can be used for one or multiple service types
   ('service-type').  Examples of supported service types are as
   follows:

   *  L3VPN [RFC4364],

   *  Virtual Private LAN Service (VPLS) [RFC4761][RFC4762],

   *  Virtual Private Wire Service (VPWS) [RFC8214],

   *  BGP MPLS-Based Ethernet VPN [RFC7432],

   *  VPWS in Ethernet VPN [RFC8214],

   *  Provider Backbone Bridging Combined with Ethernet VPN (PBB-EVPN)
      [RFC7623],

Boucadair, et al.         Expires 13 July 2023                 [Page 10]
Internet-Draft            A YANG Model for SAPs             January 2023

   *  VXLAN-based EVPN [RFC8365],

   *  Virtual Networks [RFC8453],

   *  Enhanced VPN (VPN+) [I-D.ietf-teas-enhanced-vpn],

   *  Network slice [I-D.ietf-teas-ietf-network-slices],

   *  SDWAN [I-D.ietf-bess-bgp-sdwan-usage], and

   *  Basic IP connectivity.

   These service types build on the types that are already defined in
   [RFC9181] and additional types that are defined in this document.
   Other service types can be defined in future YANG modules (including
   future revisions of the YANG module defined in this document), if
   needed.

      |  Leveraging the service types defined in [RFC9181] is meant to
      |  ease the correlation between the SAP topology and the
      |  corresponding network modules that are used to provision a
      |  specific service over a provider's network.

   Filters based on the service type can be used to access per-service
   SAP topology.  An example is depicted in Figure 10.

   A node in the topology can support one or multiple service types
   ('service-type') among those listed under the 'sap-network'
   container.  A list of SAPs are then bound to each service type that
   is supported by a given node.  Each SAP is characterized as follows:

   'sap-id':  Includes an identifier that uniquely identifies a SAP
      within a node.

      The same SAP may appear under distinct service types.  In such a
      case, the same identifier is used for these service types in
      association.

      SAPs that are associated with the interfaces that are directly
      hosting services, interfaces that are ready to host per-service
      sub-interfaces (but not yet activated), or services that are
      already instantiated on sub-interfaces are listed as SAPs.  For
      illustration purposes, Figure 9 depicts how to indicate interfaces
      that are capable for hosting per-service sub-interfaces.

      For example, 'sap-id' may be the VPN network access identifier in
      Section 7.6 of [RFC9182].  An example to illustrate the use of
      this attribute during service creation is provided in Appendix D.

Boucadair, et al.         Expires 13 July 2023                 [Page 11]
Internet-Draft            A YANG Model for SAPs             January 2023

   'description':  Includes a textual description of the SAP.

   'parent-termination-point':  Includes a reference to the parent
      termination point to which the SAP is bound.  As per Section 4.2
      of [RFC8345], a termination point terminates a link in a node.  A
      termination point can be a physical port, an interface, etc.

      The referenced parent termination point is expected to be a
      customer-facing termination point, not a core-facing termination
      point.

      This attribute is used, e.g., to associate an interface with its
      sub-interfaces as all these interfaces may be listed under the
      SAPs of a node.  It is also used to link a SAP with the physical
      topology.

      For example, this data node can be used to map the IETF Network
      Slice endpoints ([I-D.ietf-teas-ietf-network-slices]) to the
      service/tunnel/path endpoints in the underlay network.

   'attachment-interface':  Indicates a reference to the interface to
      which the SAP is bound.  The same interface may host multiple
      services.

      Whether the attachment identifier echoes the content of the
      attachment interface is deployment specific.

      For example, this reference may be any of the identifiers ('l2-
      termination-point', 'local-bridge-reference', 'bearer-reference',
      or 'lag-interface-id') defined in Section 7.6.1 of [RFC9182] or
      'l3-termination-point' defined in Section 7.6.2 of [RFC9182].  It
      is the responsibility of the controller to ensure that consistent
      references are used in the SAP and underlying device modes or any
      other device inventory mechanism.

   'interface-type':  Indicates whether a SAP is bound to a physical
      port, a loopback interface, a Link Aggregation Group (LAG)
      interface [IEEE802.1AX], an Integrated Routing Bridge (IRB) (e.g.,
      [RFC9135]), a local bridge reference, etc.

      The mapping to the detailed interface types as per [RFC7224] is
      maintained by the controller.  That mapping is used, for example,
      when the controller translates this SAP network module into device
      modules (Section 4.4 of [RFC8969]).

   'encapsulation-type':  Indicates the encapsulation type for the
      interface indicated in the 'attachment-interface' attribute.  The
      types are taken from [RFC9181].

Boucadair, et al.         Expires 13 July 2023                 [Page 12]
Internet-Draft            A YANG Model for SAPs             January 2023

      This data node can be used, for example, to decide whether an
      existing SAP can be (re)used to host a service or if a new sub-
      interface has to be instantiated.

   'role':  Specifies the role of a SAP (e.g., a UNI or NNI).

      A SAP inherits the role of its parent interface ('parent-
      termination-point').

   'allows-child-saps':  When set to 'true', this data node indicates
      that the attachment interface for this SAP is capable of hosting
      per-service sub-interfaces.

      Whether a service can be directly attached to the parent SAP in
      addition to child SAPs depends on the service.

   'peer-sap-id':  Includes references to the remote endpoints of an
      attachment circuit.  This identifier may or may not be the same as
      the SAP identifier used in the peer's configuration.  Note that
      the use of identical identifiers eases correlating between a
      peer's service request with a local SAP.

      Examples of such a reference are: a site identifier (Section 6.3
      of [RFC8299]), a Service Demarcation Point (SDP) identifier
      (Section 2.1 of [I-D.ietf-teas-ietf-network-slices]), and the IP
      address of a peer Autonomous System Border Router (ASBR).

   'sap-status':  Indicates the operational status of a SAP.  Values are
      taken from the values defined in [RFC9181].

      When both a sub-interface and its parent interface are present but
      the parent interface is disabled, the status of the parent
      interface takes precedence over the status indicated for the sub-
      interface.

   'service-status':  Indicates the administrative and operational
      status of the service for a given SAP.  This information is
      particularly useful when many services are provisioned for the
      same SAP, but only a subset of these services are activated.  As
      such, the administrative 'service-status' MUST NOT be influenced
      by the value of the operational 'sap-status'.

      The service 'oper-status' reflects the operational status of the
      service only as observed at a specific SAP, not the overall
      network level status of the service connecting many SAPs.  The
      network level service status can be retrieved using specific
      network models, e.g., Section 7.3 of [RFC9182] or Section 7.3 of
      [RFC9291].

Boucadair, et al.         Expires 13 July 2023                 [Page 13]
Internet-Draft            A YANG Model for SAPs             January 2023

      In order to assess the service delivery status for a given SAP, it
      is recommended to check both the administrative and operational
      service status ('service-status') in addition to the 'sap-status'.
      In doing so, a network controller (or operator) can detect
      anomalies.  For example, if a service is administratively enabled
      for a SAP and the 'sap-status' of that SAP is reported as being
      down, the service 'oper-status' is also expected to be down.
      Retrieving a distinct service operational status under these
      conditions can be used as a trigger to detect an anomaly.
      Likewise, administrative status and operational status can be
      compared to detect service-specific SAP activation anomalies.  For
      example, a service that is administratively declared as inactive
      for a SAP but reported as operationally active for that SAP is an
      indication that some service provision actions are needed to align
      the observed service status with the expected service status.

6.  SAP YANG Module

   This module imports types from [RFC6991], [RFC8343], [RFC8345], and
   [RFC9181].

   The 'sap-entry' and 'sap-list' are defined as groupings for the reuse
   of these nodes in service-specific YANG modules.

   <CODE BEGINS> file "ietf-sap-ntw@2023-01-09.yang"
   module ietf-sap-ntw {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-sap-ntw";
     prefix sap;

     import ietf-network-topology {
       prefix nt;
       reference
         "RFC 8345: A YANG Data Model for Network
                    Topologies, Section 6.2";
     }
     import ietf-network {
       prefix nw;
       reference
         "RFC 8345: A YANG Data Model for Network
                    Topologies, Section 6.1";
     }
     import ietf-vpn-common {
       prefix vpn-common;
       reference
         "RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3
                    VPNs";

Boucadair, et al.         Expires 13 July 2023                 [Page 14]
Internet-Draft            A YANG Model for SAPs             January 2023

     }
     import ietf-yang-types {
       prefix yang;
       reference
         "RFC 6991: Common YANG Data Types, Section 3";
     }

     organization
       "IETF OPSA (Operations and Management Area) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
        WG List:  <mailto:opsawg@ietf.org>

        Editor:   Mohamed Boucadair
                  <mailto:mohamed.boucadair@orange.com>

        Author:   Oscar Gonzalez de Dios
                  <mailto:oscar.gonzalezdedios@telefonica.com>

        Author:   Samier Barguil
                  <mailto:samier.barguil_giraldo@nokia.com>

        Author:   Qin Wu
                  <mailto:bill.wu@huawei.com>

        Author:   Victor Lopez
                  <victor.lopez@nokia.com>";
     description
       "This YANG module defines a model for representing, managing,
        and controlling the Service Attachment Points (SAPs) in the
        network topology.

        Copyright (c) 2023 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Revised BSD License set
        forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.";

     revision 2023-01-09 {
       description

Boucadair, et al.         Expires 13 July 2023                 [Page 15]
Internet-Draft            A YANG Model for SAPs             January 2023

         "Initial version";
       reference
         "RFC XXXX: A YANG Network Model for Service Attachment
                    Points (SAPs)";
     }

     identity virtual-network {
       base vpn-common:service-type;
       description
         "Virtual network. Refers to a logical network instance
          that is built over a physical network.";
       reference
         "RFC 8453: Framework for Abstraction and Control of TE
                    Networks (ACTN)";
     }

     identity enhanced-vpn {
       base vpn-common:service-type;
       description
         "Enhanced VPN (VPN+). VPN+ is an approach that is
          based on existing VPN and Traffic Engineering (TE)
          technologies but adds characteristics that specific
          services require over and above traditional VPNs.";
       reference
         "draft-ietf-teas-enhanced-vpn:
            A Framework for Enhanced Virtual Private Network
            (VPN+) Services";
     }

     identity network-slice {
       base vpn-common:service-type;
       description
         "IETF network slice.  An IETF network slice
          is a logical network topology connecting a number of
          endpoints using a set of shared or dedicated network
          resources that are used to satisfy specific service
          objectives.";
       reference
         "draft-ietf-teas-ietf-network-slices:
            A Framework for IETF Network Slices";
     }

     identity sdwan {
       base vpn-common:service-type;
       description
         "PE-based Software-Defined Wide Area Network (SDWAN).";
       reference
         "draft-ietf-bess-bgp-sdwan-usage: BGP Usage for SDWAN

Boucadair, et al.         Expires 13 July 2023                 [Page 16]
Internet-Draft            A YANG Model for SAPs             January 2023

            Overlay Network";
     }

     identity basic-connectivity {
       base vpn-common:service-type;
       description
         "Basic IP connectivity. This is, for example, a plain
          connectivity offered to Enterprises over a dedicated
          or shared MPLS infrastructure.";
     }

     identity interface-role {
       description
         "Base identity for the network role of an interface.";
     }

     identity uni {
       base interface-role;
       description
         "User-Network Interface (UNI).";
     }

     identity nni {
       base interface-role;
       description
         "Network-to-Network Interface (NNI).";
     }

     identity interface-type {
       description
         "Base identity for the interface type.";
     }

     identity phy {
       base interface-type;
       description
         "Physical port.";
     }

     identity loopback {
       base interface-type;
       description
         "Loopback interface.";
     }

     identity lag {
       base interface-type;
       description

Boucadair, et al.         Expires 13 July 2023                 [Page 17]
Internet-Draft            A YANG Model for SAPs             January 2023

         "Link Aggregation Group (LAG) interface.";
     }

     identity irb {
       base interface-type;
       description
         "Integrated Routing Bridge (IRB). An IRB typically
          connects an IP-VRF to a bridge domain.";
     }

     identity local-bridge {
       base interface-type;
       description
         "A local bridge reference to accommodate, e.g.,
          implementations that require internal bridging.
          When such a type is used, a reference to a local
          bridge domain is used to identify the interface.";
     }

     identity logical {
       base interface-type;
       description
         "Refers to a logical sub-interface that is typically
          used to bind a service. This type is used only
          if none of the other more specific types (i.e.,
          loopback, lag, irb, or local-bridge) can be used.";
     }

     grouping sap-entry {
       description
         "Service Attachment Point (SAP) entry information.";
       leaf sap-id {
         type string;
         description
           "Indicates an identifier that uniquely identifies
            a SAP.";
       }
       leaf description {
         type string;
         description
           "A textual description of the SAP.";
       }
       leaf parent-termination-point {
         type nt:tp-id;
         description
           "Indicates the parent termination point to
            which the SAP is attached to. A termination
            point can be a physical port, an interface, etc.";

Boucadair, et al.         Expires 13 July 2023                 [Page 18]
Internet-Draft            A YANG Model for SAPs             January 2023

       }
       leaf attachment-interface {
         type string;
         description
           "Indicates the interface to which the SAP is bound.";
       }
       leaf interface-type {
         type identityref {
           base interface-type;
         }
         description
           "The type of the interface to which the SAP is bound.";
       }
       leaf encapsulation-type {
         type identityref {
           base vpn-common:encapsulation-type;
         }
         description
           "Encapsulation type of the interface to which the
            SAP is bound.";
       }
       leaf role {
         type identityref {
           base interface-role;
         }
         description
           "Indicates the role of a SAP.";
       }
       leaf allows-child-saps {
         type boolean;
         description
           "Indicates whether the attachment interface of this
            SAP is capable of hosting per-service sub-interfaces.";
       }
       leaf-list peer-sap-id {
         type string;
         description
           "Indicates an identifier of the peer's termination
            identifier (e.g., Customer Edge (CE)). This
            information can be used for correlation purposes,
            such as identifying the SAP that is attached to
            an endpoint that is provided in a service request.";
       }
     }

     grouping sap-list {
       description
         "Service Attachment Point (SAP) information.";

Boucadair, et al.         Expires 13 July 2023                 [Page 19]
Internet-Draft            A YANG Model for SAPs             January 2023

       list sap {
         key "sap-id";
         description
           "The Service Attachment Points are abstraction of
            the points where network services such as L3VPNs,
            L2VPNs, or network slices can be attached to.";
         uses sap-entry;
         container sap-status {
           config false;
           description
             "Indicates the operational status of the SAP,
              independent of any service provisioned over it.";

           uses vpn-common:oper-status-timestamp;
         }
         container service-status {
           description
             "Indicates the service status.";
           container admin-status {
             description
               "Administrative service status.";
             leaf status {
               type identityref {
                 base vpn-common:administrative-status;
               }
               description
                 "Administrative status of the service provisioned
                  at the SAP.";
             }
             leaf last-change {
               type yang:date-and-time;
               description
                 "Indicates the actual date and time of the service
                  status change.";
             }
           }
           container oper-status {
             config false;
             description
               "Operational status of the service provisioned
                at the SAP.";
             uses vpn-common:oper-status-timestamp;
           }
         }
       }
     }

     augment "/nw:networks/nw:network/nw:network-types" {

Boucadair, et al.         Expires 13 July 2023                 [Page 20]
Internet-Draft            A YANG Model for SAPs             January 2023

       description
         "Introduces a new network type for SAP network.";
       container sap-network {
         presence "Indicates SAP network type.";
         description
           "The presence of the container node indicates the
            SAP network type.";
         leaf-list service-type {
           type identityref {
             base vpn-common:service-type;
           }
           description
             "Indicates the set of supported service types.";
         }
       }
     }

     augment "/nw:networks/nw:network/nw:node" {
       when '../nw:network-types/sap:sap-network' {
         description
           "Augmentation parameters apply only for SAP
            networks.";
       }
       description
         "SAP parameters for the node level.";
       list service {
         key "service-type";
         description
           "A list of supported service types for the node.";
         leaf service-type {
           type identityref {
             base vpn-common:service-type;
           }
           description
             "Indicates a service type.";
         }
         uses sap-list;
       }
     }
   }
   <CODE ENDS>

7.  IANA Considerations

   This document registers the following namespace URI in the "ns"
   subregistry within the "IETF XML Registry" [RFC3688]:

Boucadair, et al.         Expires 13 July 2023                 [Page 21]
Internet-Draft            A YANG Model for SAPs             January 2023

       URI: urn:ietf:params:xml:ns:yang:ietf-sap-ntw
       Registrant Contact: The IESG.
       XML: N/A, the requested URI is an XML namespace.

   This document registers the following YANG module in the YANG Module
   Names registry [RFC6020] within the "YANG Parameters" registry:

       name: ietf-sap-ntw
       namespace: urn:ietf:params:xml:ns:yang:ietf-sap-ntw
       maintained by IANA? N
       prefix: sap
       reference: RFC XXXX

8.  Security Considerations

   The YANG module specified in this document defines schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC8446].

   The Network Configuration Access Control Model (NACM) [RFC8341]
   provides the means to restrict access for particular NETCONF or
   RESTCONF users to a preconfigured subset of all available NETCONF or
   RESTCONF protocol operations and content.

   There are a number of data nodes defined in this YANG module that are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   to these data nodes without proper protection can have a negative
   effect on network operations.  These are the subtrees and data nodes
   and their sensitivity/vulnerability:

   *  /nw:networks/nw:network/nw:node/sap:service/sap:sap

      This subtree specifies the configurations of the nodes in a SAP
      network model.  Unexpected changes to this subtree (e.g.,
      associating a SAP with another parent termination point) could
      lead to service disruption and/or network misbehavior.

   Some of the readable data nodes in this YANG module may be considered
   sensitive or vulnerable in some network environments.  It is thus
   important to control read access (e.g., via get, get-config, or
   notification) to these data nodes.  These are the subtrees and data
   nodes and their sensitivity/vulnerability:

Boucadair, et al.         Expires 13 July 2023                 [Page 22]
Internet-Draft            A YANG Model for SAPs             January 2023

   *  /nw:networks/nw:network/nw:node/sap:service/sap:sap

      Unauthorized access to this subtree can disclose the operational
      state information of the nodes in a SAP network model (e.g.,
      disclose the identity of a customer 'peer-sap-id').

9.  Acknowledgements

   Thanks to Adrian Farrell, Daniel King, Dhruv Dhody, Benoit Claise, Bo
   Wu, Erez Segev, Raul Arco, Joe Clarke, Riyas Valiyapalathingal, Tom
   Petch, Olga Havel, and Richard Roberts for the comments.

   Thanks to Martin Bjoerklund for the YANG Doctors review, Menachem
   Dodge for the opsdir review, Mach Chen for the rtgdir review, and
   Linda Dunbar for the genart review.

   Special thanks to Adrian Farrel for the Shepherd review and Rob
   Wilton for the careful AD review.

10.  References

10.1.  Normative References

   [RFC2119]  Bradner, S. and RFC Publisher, "Key words for use in RFCs
              to Indicate Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3688]  Mealling, M. and RFC Publisher, "The IETF XML Registry",
              BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC6020]  Bjorklund, M., Ed. and RFC Publisher, "YANG - A Data
              Modeling Language for the Network Configuration Protocol
              (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              Bierman, A., Ed., and RFC Publisher, "Network
              Configuration Protocol (NETCONF)", RFC 6241,
              DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M. and RFC Publisher, "Using the NETCONF
              Protocol over Secure Shell (SSH)", RFC 6242,
              DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

Boucadair, et al.         Expires 13 July 2023                 [Page 23]
Internet-Draft            A YANG Model for SAPs             January 2023

   [RFC6991]  Schoenwaelder, J., Ed. and RFC Publisher, "Common YANG
              Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7950]  Bjorklund, M., Ed. and RFC Publisher, "The YANG 1.1 Data
              Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August
              2016, <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., Watsen, K., and RFC Publisher,
              "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040,
              January 2017, <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8174]  Leiba, B. and RFC Publisher, "Ambiguity of Uppercase vs
              Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174,
              DOI 10.17487/RFC8174, May 2017,
              <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8341]  Bierman, A., Bjorklund, M., and RFC Publisher, "Network
              Configuration Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8345]  Clemm, A., Medved, J., Varga, R., Bahadur, N.,
              Ananthakrishnan, H., Liu, X., and RFC Publisher, "A YANG
              Data Model for Network Topologies", RFC 8345,
              DOI 10.17487/RFC8345, March 2018,
              <https://www.rfc-editor.org/info/rfc8345>.

   [RFC8346]  Clemm, A., Medved, J., Varga, R., Liu, X.,
              Ananthakrishnan, H., Bahadur, N., and RFC Publisher, "A
              YANG Data Model for Layer 3 Topologies", RFC 8346,
              DOI 10.17487/RFC8346, March 2018,
              <https://www.rfc-editor.org/info/rfc8346>.

   [RFC8446]  Rescorla, E. and RFC Publisher, "The Transport Layer
              Security (TLS) Protocol Version 1.3", RFC 8446,
              DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [RFC8795]  Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H.,
              Gonzalez de Dios, O., and RFC Publisher, "YANG Data Model
              for Traffic Engineering (TE) Topologies", RFC 8795,
              DOI 10.17487/RFC8795, August 2020,
              <https://www.rfc-editor.org/info/rfc8795>.

Boucadair, et al.         Expires 13 July 2023                 [Page 24]
Internet-Draft            A YANG Model for SAPs             January 2023

   [RFC9181]  Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
              Ed., Wu, Q., and RFC Publisher, "A Common YANG Data Model
              for Layer 2 and Layer 3 VPNs", RFC 9181,
              DOI 10.17487/RFC9181, February 2022,
              <https://www.rfc-editor.org/info/rfc9181>.

10.2.  Informative References

   [I-D.ietf-bess-bgp-sdwan-usage]
              Dunbar, L., Guichard, J., Sajassi, A., Drake, J., Najem,
              B., and D. Carrel, "BGP Usage for SDWAN Overlay Networks",
              Work in Progress, Internet-Draft, draft-ietf-bess-bgp-
              sdwan-usage-06, 10 October 2022,
              <https://www.ietf.org/archive/id/draft-ietf-bess-bgp-
              sdwan-usage-06.txt>.

   [I-D.ietf-teas-enhanced-vpn]
              Dong, J., Bryant, S., Li, Z., Miyasaka, T., and Y. Lee, "A
              Framework for Enhanced Virtual Private Network (VPN+)",
              Work in Progress, Internet-Draft, draft-ietf-teas-
              enhanced-vpn-11, 19 September 2022,
              <https://www.ietf.org/archive/id/draft-ietf-teas-enhanced-
              vpn-11.txt>.

   [I-D.ietf-teas-ietf-network-slices]
              Farrel, A., Drake, J., Rokui, R., Homma, S., Makhijani,
              K., Contreras, L. M., and J. Tantsura, "A Framework for
              IETF Network Slices", Work in Progress, Internet-Draft,
              draft-ietf-teas-ietf-network-slices-17, 21 December 2022,
              <https://www.ietf.org/archive/id/draft-ietf-teas-ietf-
              network-slices-17.txt>.

   [IEEE802.1AX]
              "Link Aggregation", IEEE Std 802.1AX-2020, 2020.

   [MEF17]    The Metro Ethernet Forum, "Technical Specification MEF 17,
              Service OAM Requirements & Framework - Phase 1", April
              2007, <https://www.mef.net/wp-content/uploads/2015/04/MEF-
              17.pdf>.

   [MEF6]     The Metro Ethernet Forum, "Technical Specification MEF 6,
              Ethernet Services Definitions - Phase I", June 2004,
              <https://www.mef.net/Assets/Technical_Specifications/PDF/
              MEF_6.pdf>.

Boucadair, et al.         Expires 13 July 2023                 [Page 25]
Internet-Draft            A YANG Model for SAPs             January 2023

   [RFC4026]  Andersson, L., Madsen, T., and RFC Publisher, "Provider
              Provisioned Virtual Private Network (VPN) Terminology",
              RFC 4026, DOI 10.17487/RFC4026, March 2005,
              <https://www.rfc-editor.org/info/rfc4026>.

   [RFC4364]  Rosen, E., Rekhter, Y., and RFC Publisher, "BGP/MPLS IP
              Virtual Private Networks (VPNs)", RFC 4364,
              DOI 10.17487/RFC4364, February 2006,
              <https://www.rfc-editor.org/info/rfc4364>.

   [RFC4761]  Kompella, K., Ed. and Y. Rekhter, Ed., "Virtual Private
              LAN Service (VPLS) Using BGP for Auto-Discovery and
              Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007,
              <https://www.rfc-editor.org/info/rfc4761>.

   [RFC4762]  Lasserre, M., Ed. and V. Kompella, Ed., "Virtual Private
              LAN Service (VPLS) Using Label Distribution Protocol (LDP)
              Signaling", RFC 4762, DOI 10.17487/RFC4762, January 2007,
              <https://www.rfc-editor.org/info/rfc4762>.

   [RFC6004]  Berger, L., Fedyk, D., and RFC Publisher, "Generalized
              MPLS (GMPLS) Support for Metro Ethernet Forum and G.8011
              Ethernet Service Switching", RFC 6004,
              DOI 10.17487/RFC6004, October 2010,
              <https://www.rfc-editor.org/info/rfc6004>.

   [RFC6215]  Bocci, M., Levrau, L., Frost, D., and RFC Publisher, "MPLS
              Transport Profile User-to-Network and Network-to-Network
              Interfaces", RFC 6215, DOI 10.17487/RFC6215, April 2011,
              <https://www.rfc-editor.org/info/rfc6215>.

   [RFC7149]  Boucadair, M., Jacquenet, C., and RFC Publisher,
              "Software-Defined Networking: A Perspective from within a
              Service Provider Environment", RFC 7149,
              DOI 10.17487/RFC7149, March 2014,
              <https://www.rfc-editor.org/info/rfc7149>.

   [RFC7224]  Bjorklund, M. and RFC Publisher, "IANA Interface Type YANG
              Module", RFC 7224, DOI 10.17487/RFC7224, May 2014,
              <https://www.rfc-editor.org/info/rfc7224>.

   [RFC7426]  Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
              Hadi Salim, J., Meyer, D., Koufopavlou, O., and RFC
              Publisher, "Software-Defined Networking (SDN): Layers and
              Architecture Terminology", RFC 7426, DOI 10.17487/RFC7426,
              January 2015, <https://www.rfc-editor.org/info/rfc7426>.

Boucadair, et al.         Expires 13 July 2023                 [Page 26]
Internet-Draft            A YANG Model for SAPs             January 2023

   [RFC7432]  Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
              Uttaro, J., Drake, J., Henderickx, W., and RFC Publisher,
              "BGP MPLS-Based Ethernet VPN", RFC 7432,
              DOI 10.17487/RFC7432, February 2015,
              <https://www.rfc-editor.org/info/rfc7432>.

   [RFC7623]  Sajassi, A., Ed., Salam, S., Bitar, N., Isaac, A.,
              Henderickx, W., and RFC Publisher, "Provider Backbone
              Bridging Combined with Ethernet VPN (PBB-EVPN)", RFC 7623,
              DOI 10.17487/RFC7623, September 2015,
              <https://www.rfc-editor.org/info/rfc7623>.

   [RFC8214]  Boutros, S., Sajassi, A., Salam, S., Drake, J., and J.
              Rabadan, "Virtual Private Wire Service Support in Ethernet
              VPN", RFC 8214, DOI 10.17487/RFC8214, August 2017,
              <https://www.rfc-editor.org/info/rfc8214>.

   [RFC8299]  Wu, Q., Ed., Litkowski, S., Tomotaki, L., Ogaki, K., and
              RFC Publisher, "YANG Data Model for L3VPN Service
              Delivery", RFC 8299, DOI 10.17487/RFC8299, January 2018,
              <https://www.rfc-editor.org/info/rfc8299>.

   [RFC8309]  Wu, Q., Liu, W., Farrel, A., and RFC Publisher, "Service
              Models Explained", RFC 8309, DOI 10.17487/RFC8309, January
              2018, <https://www.rfc-editor.org/info/rfc8309>.

   [RFC8340]  Bjorklund, M., Berger, L., Ed., and RFC Publisher, "YANG
              Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340,
              March 2018, <https://www.rfc-editor.org/info/rfc8340>.

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              Wilton, R., and RFC Publisher, "Network Management
              Datastore Architecture (NMDA)", RFC 8342,
              DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC8343]  Bjorklund, M. and RFC Publisher, "A YANG Data Model for
              Interface Management", RFC 8343, DOI 10.17487/RFC8343,
              March 2018, <https://www.rfc-editor.org/info/rfc8343>.

   [RFC8365]  Sajassi, A., Ed., Drake, J., Ed., Bitar, N., Shekhar, R.,
              Uttaro, J., and W. Henderickx, "A Network Virtualization
              Overlay Solution Using Ethernet VPN (EVPN)", RFC 8365,
              DOI 10.17487/RFC8365, March 2018,
              <https://www.rfc-editor.org/info/rfc8365>.

Boucadair, et al.         Expires 13 July 2023                 [Page 27]
Internet-Draft            A YANG Model for SAPs             January 2023

   [RFC8453]  Ceccarelli, D., Ed., Lee, Y., Ed., and RFC Publisher,
              "Framework for Abstraction and Control of TE Networks
              (ACTN)", RFC 8453, DOI 10.17487/RFC8453, August 2018,
              <https://www.rfc-editor.org/info/rfc8453>.

   [RFC8466]  Wen, B., Fioccola, G., Ed., Xie, C., Jalil, L., and RFC
              Publisher, "A YANG Data Model for Layer 2 Virtual Private
              Network (L2VPN) Service Delivery", RFC 8466,
              DOI 10.17487/RFC8466, October 2018,
              <https://www.rfc-editor.org/info/rfc8466>.

   [RFC8969]  Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., Geng,
              L., and RFC Publisher, "A Framework for Automating Service
              and Network Management with YANG", RFC 8969,
              DOI 10.17487/RFC8969, January 2021,
              <https://www.rfc-editor.org/info/rfc8969>.

   [RFC9135]  Sajassi, A., Salam, S., Thoria, S., Drake, J., and J.
              Rabadan, "Integrated Routing and Bridging in Ethernet VPN
              (EVPN)", RFC 9135, DOI 10.17487/RFC9135, October 2021,
              <https://www.rfc-editor.org/info/rfc9135>.

   [RFC9182]  Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
              Ed., Munoz, L., Aguado, A., and RFC Publisher, "A YANG
              Network Data Model for Layer 3 VPNs", RFC 9182,
              DOI 10.17487/RFC9182, February 2022,
              <https://www.rfc-editor.org/info/rfc9182>.

   [RFC9291]  Boucadair, M., Ed., Gonzalez de Dios, O., Ed., Barguil,
              S., Munoz, L., and RFC Publisher, "A YANG Network Data
              Model for Layer 2 VPNs", RFC 9291, DOI 10.17487/RFC9291,
              September 2022, <https://www.rfc-editor.org/info/rfc9291>.

Appendix A.  A Simplified SAP Network Example

   An example of a SAP topology that is reported by a network controller
   is depicted in Figure 7.  This example echoes the topology shown in
   Figure 4.  Only a minimum set of information is provided for each
   SAP.  Particularly, 'parent-termination-point', 'attachment-
   interface', 'interface-type', 'encapsulation-type', and 'role' are
   not shown in the example.  SAPs that are capable of hosting a
   service, but not yet activated, are identified by the 'sap-status/
   status' set to 'ietf-vpn-common:op-down' and 'service-status/admin-
   status/status' set to 'ietf-vpn-common:admin-down'.  SAPs that are
   enabled to deliver a service are identified by 'service-status/admin-
   status/status' set to 'ietf-vpn-common:admin-up' and 'service-status/
   oper-status/status' set to 'ietf-vpn-common:op-up'.  Note that none
   of the anomalies discussed in Section 5 are detected for these SAPs.

Boucadair, et al.         Expires 13 July 2023                 [Page 28]
Internet-Draft            A YANG Model for SAPs             January 2023

   {
     "ietf-network:networks": {
       "network": [
         {
           "network-types": {
             "ietf-sap-ntw:sap-network": {
               "service-type": [
                 "ietf-vpn-common:l3vpn",
                 "ietf-vpn-common:vpls"
               ]
             }
           },
           "network-id": "foo:an-id",
           "node": [
             {
               "node-id": "foo:pe1",
               "ietf-sap-ntw:service": [
                 {
                   "service-type": "ietf-vpn-common:l3vpn",
                   "sap": [
                     {
                       "sap-id": "sap#11",
                       "peer-sap-id": ["ce-1"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#12",
                       "sap-status": {
                         "status": "ietf-vpn-common:op-down"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-down"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#13",

Boucadair, et al.         Expires 13 July 2023                 [Page 29]
Internet-Draft            A YANG Model for SAPs             January 2023

                       "sap-status": {
                         "status": "ietf-vpn-common:op-down"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-down"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#14",
                       "sap-status": {
                         "status": "ietf-vpn-common:op-down"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-down"
                         }
                       }
                     }
                   ]
                 }
               ]
             },
             {
               "node-id": "foo:pe2",
               "ietf-sap-ntw:service": [
                 {
                   "service-type": "ietf-vpn-common:l3vpn",
                   "sap": [
                     {
                       "sap-id": "sap#21",
                       "sap-status": {
                         "status": "ietf-vpn-common:op-down"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-down"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#22",
                       "peer-sap-id": ["ce-2"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {

Boucadair, et al.         Expires 13 July 2023                 [Page 30]
Internet-Draft            A YANG Model for SAPs             January 2023

                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     }
                   ]
                 }
               ]
             },
             {
               "node-id": "foo:pe3",
               "ietf-sap-ntw:service": [
                 {
                   "service-type": "ietf-vpn-common:l3vpn",
                   "sap": [
                     {
                       "sap-id": "sap#31",
                       "sap-status": {
                         "status": "ietf-vpn-common:op-down"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-down"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#32",
                       "sap-status": {
                         "status": "ietf-vpn-common:op-down"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-down"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#33",
                       "peer-sap-id": ["ce-3"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {

Boucadair, et al.         Expires 13 July 2023                 [Page 31]
Internet-Draft            A YANG Model for SAPs             January 2023

                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     }
                   ]
                 }
               ]
             },
             {
               "node-id": "foo:pe4",
               "ietf-sap-ntw:service": [
                 {
                   "service-type": "ietf-vpn-common:l3vpn",
                   "sap": [
                     {
                       "sap-id": "sap#41",
                       "peer-sap-id": ["ce-3"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#42",
                       "peer-sap-id": ["ce-4"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     },
                     {

Boucadair, et al.         Expires 13 July 2023                 [Page 32]
Internet-Draft            A YANG Model for SAPs             January 2023

                       "sap-id": "sap#43",
                       "sap-status": {
                         "status": "ietf-vpn-common:op-down"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-down"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#44",
                       "peer-sap-id": ["ce-5"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     }
                   ]
                 }
               ]
             }
           ]
         }
       ]
     }
   }

                 Figure 7: A Simplified SAP Network Example

Appendix B.  A Simple Example of SAP Network Model: Node Filter

   In the example shown in Figure 8, PE1 (with a "node-id" set to
   "foo:pe1") has two physical interfaces "GE0/6/1" and "GE0/6/4".  Two
   sub-interfaces "GE0/6/4.1" and "GE0/6/4.2" are associated with the
   physical interface "GE0/6/4".  Let us consider that four SAPs are
   exposed to the service orchestrator and mapped to these physical
   interfaces and sub-interfaces.

Boucadair, et al.         Expires 13 July 2023                 [Page 33]
Internet-Draft            A YANG Model for SAPs             January 2023

                  .-------------------------.
                  |                 GE0/6/4 |
                  | PE1                .----+----.
                  |                    |sap#2    |GE0/6/4.1
                  |                    |      .--+--.
                  |                    |      |sap#3|
                  |                    |      '--+--'
                  |                    |         |GE0/6/4.2
                  |                    |      .--+--.
                  |                    |      |sap#4|
                  |                    |      '--+--'
                  |                    |         |
                  |                    +----+----+
                  |                         |
                  |                  GE0/6/1|
                  |                    .----+----.
                  |                    |sap#1    |
                  |                    '----+----'
                  |                         |
                  '-------------------------'

      Figure 8: An Example of a PE and its Physical/Logical Interfaces

   Let us assume that no service is enabled yet for the SAP associated
   with the physical interface "GE0/6/1".  Also, let us assume that, for
   the SAPs that are associated with the physical interface "GE0/6/4",
   VPLS and L3VPN services are activated on the two sub-interfaces
   "GE0/6/4.1" and "GE0/6/4.2", respectively.  Both "sap#1" and "sap#2"
   are tagged as being capable of hosting per-service sub-interfaces
   ('allows-child-saps' is set to 'true').

   A service orchestrator can query what services are provided on which
   SAPs of PE1 from the network controller by sending, e.g., a GET
   RESTCONF request.  Figure 9 shows an example of the body of the
   RESTCONF response that is received from the network controller.

   {
     "ietf-sap-ntw:service": [
       {
         "service-type": "ietf-vpn-common:l3vpn",
         "sap": [
           {
             "sap-id": "sap#1",
             "description": "Ready to host SAPs",
             "attachment-interface": "GE0/6/1",
             "interface-type": "ietf-sap-ntw:phy",
             "role": "ietf-sap-ntw:uni",
             "allows-child-saps": true,

Boucadair, et al.         Expires 13 July 2023                 [Page 34]
Internet-Draft            A YANG Model for SAPs             January 2023

             "sap-status": {
               "status": "ietf-vpn-common:op-up"
             }
           },
           {
             "sap-id": "sap#2",
             "description": "Ready to host SAPs",
             "attachment-interface": "GE0/6/4",
             "interface-type": "ietf-sap-ntw:phy",
             "role": "ietf-sap-ntw:uni",
             "allows-child-saps": true,
             "sap-status": {
               "status": "ietf-vpn-common:op-up"
             }
           },
           {
             "sap-id": "sap#3",
             "description": "A first SAP description",
             "parent-termination-point": "GE0/6/4",
             "attachment-interface": "GE0/6/4.1",
             "interface-type": "ietf-sap-ntw:logical",
             "encapsulation-type": "ietf-vpn-common:vlan-type",
             "sap-status": {
               "status": "ietf-vpn-common:op-up"
             },
             "service-status": {
               "admin-status": {
                 "status": "ietf-vpn-common:admin-up"
               },
               "oper-status": {
                 "status": "ietf-vpn-common:op-up"
               }
             }
           }
         ]
       },
       {
         "service-type": "ietf-vpn-common:vpls",
         "sap": [
           {
             "sap-id": "sap#1",
             "description": "Ready to host SAPs",
             "attachment-interface": "GE0/6/1",
             "interface-type": "ietf-sap-ntw:phy",
             "role": "ietf-sap-ntw:uni",
             "allows-child-saps": true,
             "sap-status": {
               "status": "ietf-vpn-common:op-up"

Boucadair, et al.         Expires 13 July 2023                 [Page 35]
Internet-Draft            A YANG Model for SAPs             January 2023

             }
           },
           {
             "sap-id": "sap#2",
             "description": "Ready to host SAPs",
             "attachment-interface": "GE0/6/4",
             "interface-type": "ietf-sap-ntw:phy",
             "role": "ietf-sap-ntw:uni",
             "allows-child-saps": true,
             "sap-status": {
               "status": "ietf-vpn-common:op-up"
             }
           },
           {
             "sap-id": "sap#4",
             "description": "Another description",
             "parent-termination-point": "GE0/6/4",
             "attachment-interface": "GE0/6/4.2",
             "interface-type": "ietf-sap-ntw:logical",
             "encapsulation-type": "ietf-vpn-common:vlan-type",
             "sap-status": {
               "status": "ietf-vpn-common:op-up"
             },
             "service-status": {
               "admin-status": {
                 "status": "ietf-vpn-common:admin-up"
               },
               "oper-status": {
                 "status": "ietf-vpn-common:op-up"
               }
             }
           }
         ]
       }
     ]
   }

      Figure 9: An Example of a Response Body to a Request with a Node
                                   Filter

   Figure 10 shows an example of the response message body that is
   received from the network controller if the request includes a filter
   on the service type for a particular node:

Boucadair, et al.         Expires 13 July 2023                 [Page 36]
Internet-Draft            A YANG Model for SAPs             January 2023

   {
     "ietf-sap-ntw:service": [
       {
         "service-type": "ietf-vpn-common:l3vpn",
         "sap": [
           {
             "sap-id": "sap#1",
             "description": "Ready to host SAPs",
             "attachment-interface": "GE0/6/1",
             "interface-type": "ietf-sap-ntw:phy",
             "role": "ietf-sap-ntw:uni",
             "allows-child-saps": true,
             "sap-status": {
               "status": "ietf-vpn-common:op-up"
             }
           },
           {
             "sap-id": "sap#2",
             "description": "Ready to host SAPs",
             "attachment-interface": "GE0/6/4",
             "interface-type": "ietf-sap-ntw:phy",
             "role": "ietf-sap-ntw:uni",
             "allows-child-saps": true,
             "sap-status": {
               "status": "ietf-vpn-common:op-up"
             }
           },
           {
             "sap-id": "sap#3",
             "description": "A first SAP description",
             "parent-termination-point": "GE0/6/4",
             "attachment-interface": "GE0/6/4.1",
             "interface-type": "ietf-sap-ntw:logical",
             "encapsulation-type": "ietf-vpn-common:vlan-type",
             "sap-status": {
               "status": "ietf-vpn-common:op-up"
             },
             "service-status": {
               "admin-status": {
                 "status": "ietf-vpn-common:admin-up"
               },
               "oper-status": {
                 "status": "ietf-vpn-common:op-up"
               }
             }
           }
         ]
       }

Boucadair, et al.         Expires 13 July 2023                 [Page 37]
Internet-Draft            A YANG Model for SAPs             January 2023

     ]
   }

        Figure 10: An Example of a Response Body to a Request with a
                               Service Filter

Appendix C.  An Example of NNI SAP: Inter-AS VPN Option A

   Section 10 of [RFC4364] discuses several options to extend a VPN
   service beyond the scope of a single Autonomous System (AS).  For
   illustration purposes, this section focuses on the so called "Option
   A" but similar examples can be considered for other options.

   In this option, an ASBR of an AS is directly connected to an ASBR of
   a neighboring AS.  These two ASBRs are connected by multiple physical
   or logical interfaces.  Also, at least one sub-interface is
   maintained by these ASBRs for each of the VPNs that require their
   routes to be passed from one AS to the other AS.  Each ASBR behaves
   as a PE and treats the other as if it were a CE.

   Figure 11 shows a simplified (excerpt) topology of two ASes A and B
   with a focus on the interconnection links between these two ASes.

    .--------------------.                      .--------------------.
    |                    |                      |                    |
    |              A  .--+--.                .--+--.  A              |
    |              S  |     +================+     |  S              |
    |              B  | (VRF1)----(VPN1)----(VRF1) |  B              |
    |              R  |     |                |     |  R              |
    |                 | (VRF2)----(VPN2)----(VRF2) |                 |
    |              a  |     +================+     |  b              |
    |              1  '--+--'                '--+--'  1              |
    |     AS A           |                      |         AS B       |
    |              A  .--+--.                .--+--.  A              |
    |              S  |     +================+     |  S              |
    |              B  | (VRF1)----(VPN1)----(VRF1) |  B              |
    |              R  |     |                |     |  R              |
    |                 | (VRF2)----(VPN2)----(VRF2) |                 |
    |              a  |     +================+     |  b              |
    |              2  '--+--'                '--+--'  2              |
    |                    |                      |                    |
    '--------------------'                      '--------------------'

              Figure 11: An Example of Inter-AS VPN (Option A)

Boucadair, et al.         Expires 13 July 2023                 [Page 38]
Internet-Draft            A YANG Model for SAPs             January 2023

   Figure 12 shows an example of a message body that is received from
   the network controller of AS A (with a focus on the NNIs shown in
   Figure 11).

   {
     "ietf-network:networks": {
       "network": [
         {
           "network-types": {
             "ietf-sap-ntw:sap-network": {
               "service-type": [
                 "ietf-vpn-common:l3vpn"
               ]
             }
           },
           "network-id": "foo:an-id",
           "node": [
             {
               "node-id": "foo:asbr-a1",
               "ietf-sap-ntw:service": [
                 {
                   "service-type": "ietf-vpn-common:l3vpn",
                   "sap": [
                     {
                       "sap-id": "sap#11",
                       "description": "parent inter-as link#1",
                       "role": "ietf-sap-ntw:nni",
                       "allows-child-saps": true,
                       "peer-sap-id": ["asbr-b1"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       }
                     },
                     {
                       "sap-id": "sap#12",
                       "description": "parent inter-as link#2",
                       "role": "ietf-sap-ntw:nni",
                       "allows-child-saps": true,
                       "peer-sap-id": ["asbr-b1"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       }
                     },
                     {
                       "sap-id": "sap#13",
                       "description": "vpn1",
                       "role": "ietf-sap-ntw:nni",
                       "peer-sap-id": ["asbr-b1"],

Boucadair, et al.         Expires 13 July 2023                 [Page 39]
Internet-Draft            A YANG Model for SAPs             January 2023

                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#14",
                       "description": "vpn2",
                       "role": "ietf-sap-ntw:nni",
                       "peer-sap-id": ["asbr-b1"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     }
                   ]
                 }
               ]
             },
             {
               "node-id": "foo:asbr-a2",
               "ietf-sap-ntw:service": [
                 {
                   "service-type": "ietf-vpn-common:l3vpn",
                   "sap": [
                     {
                       "sap-id": "sap#11",
                       "description": "parent inter-as link#1",
                       "role": "ietf-sap-ntw:nni",
                       "allows-child-saps": true,
                       "peer-sap-id": ["asbr-b2"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       }

Boucadair, et al.         Expires 13 July 2023                 [Page 40]
Internet-Draft            A YANG Model for SAPs             January 2023

                     },
                     {
                       "sap-id": "sap#12",
                       "description": "parent inter-as link#2",
                       "role": "ietf-sap-ntw:nni",
                       "allows-child-saps": true,
                       "peer-sap-id": ["asbr-b2"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       }
                     },
                     {
                       "sap-id": "sap#21",
                       "description": "vpn1",
                       "role": "ietf-sap-ntw:nni",
                       "peer-sap-id": ["asbr-b2"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     },
                     {
                       "sap-id": "sap#22",
                       "description": "vpn2",
                       "role": "ietf-sap-ntw:nni",
                       "peer-sap-id": ["asbr-b2"],
                       "sap-status": {
                         "status": "ietf-vpn-common:op-up"
                       },
                       "service-status": {
                         "admin-status": {
                           "status": "ietf-vpn-common:admin-up"
                         },
                         "oper-status": {
                           "status": "ietf-vpn-common:op-up"
                         }
                       }
                     }
                   ]
                 }
               ]

Boucadair, et al.         Expires 13 July 2023                 [Page 41]
Internet-Draft            A YANG Model for SAPs             January 2023

             }
           ]
         }
       ]
     }
   }

                 Figure 12: An Example of SAP Usage for NNI

Appendix D.  Examples of Using the SAP Network Model in Service Creation

   This section describes an example to illustrate the use of the SAP
   model for service creation purposes.

   An example of a SAP topology is presented in Figure 7.  This example
   includes four PEs with their SAPs, as well as the customer
   information.

   Let us assume that an operator wants to create an L3VPN service
   between two PEs (PE3 and PE4) that are servicing two CEs (CE6 and
   CE7).  To that aim, the operator would query the SAP topology and
   would obtain a response similar to what is depicted in Figure 7.
   That response indicates that the SAPs having "sap#31" and "sap#43" as
   attachment identifiers do not have any installed services.  This is
   particularly inferred from the administrative 'service-status' which
   is set to 'ietf-vpn-common:admin-down' for all the services that are
   supported by these two SAPs and that none of the anomalies discussed
   in Section 5 are detected.  Once the "free" SAPs are identified, the
   'interface-type' and 'encapsulation-type' are checked to see if the
   requested L3VPN service is compatible with the SAP characteristics.
   If they are compatible, the 'attachment-id' value can be used as the
   VPN network access identifier in an L3NM create query.

   A similar process can be followed for creating the so-called "Inter-
   AS VPN Option A" services.  Unlike the previous example, let us
   assume that an operator wants to create an L3VPN service between two
   PEs (PE3 and PE4) but these PEs are not in the same AS: PE3 belongs
   to AS A while PE4 belongs to AS B.  The NNIs between these ASes are
   represented in Figure 11.  The operator of AS A would query, via the
   controller of its AS, the SAP topology and would obtain not only the
   information that is depicted in Figure 7, but also the information
   shown in Figure 12 representing the NNIs.  The operator would create
   the service in the AS A between PE3 and a free, compatible SAP in the
   ASBR A1.  The same procedure is followed by the operator of AS B to
   create the service in the AS B between a free, compatible SAP in the
   ASBR B1 and PE4.  The services can be provisioned in each of these
   ASes using the L3NM.

Boucadair, et al.         Expires 13 July 2023                 [Page 42]
Internet-Draft            A YANG Model for SAPs             January 2023

   Let us now assume that, instead of the L3VPN service, the operator
   wants to set up an L2VPN service.  If the 'interface-type' is a
   physical port, a new logical SAP can be created using the SAP model
   to cope with the service needs (e.g., the 'encapsulation-type'
   attribute can be set to 'ietf-vpn-common:vlan-type').  Once the
   logical SAP is created, the 'attachment-id' of the new SAP is used to
   create an L2NM instance (Section 7.6 of [RFC9291]).

Authors' Addresses

   Mohamed Boucadair (editor)
   Orange
   France
   Email: mohamed.boucadair@orange.com

   Oscar Gonzalez de Dios
   Telefonica
   Madrid
   Spain
   Email: oscar.gonzalezdedios@telefonica.com

   Samier Barguil
   Nokia
   Madrid
   Spain
   Email: samier.barguil_giraldo@nokia.com

   Qin Wu
   Huawei
   101 Software Avenue, Yuhua District
   Nanjing
   Jiangsu, 210012
   China
   Email: bill.wu@huawei.com

   Victor Lopez
   Nokia
   Spain
   Email: victor.lopez@nokia.com

Boucadair, et al.         Expires 13 July 2023                 [Page 43]